October 25 Math 2306 sec. 54 Fall 2021

Section 15: Shift Theorems

Theorem: (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

In other words, if $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\}
$$

Example: Evaluate

$$
\mathscr{L}\left\{e^{4 t} \cos (\pi t) \sin (\pi t)\right\}
$$

we need to know $\mathcal{L}\{\cos (\pi t) \sin (\pi t)\}=F(s)$.

Recall $\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\mathcal{L}[\sin (x+1)]=\frac{k}{s^{2}+k^{2}}
$$

$$
\begin{gathered}
\cos (\pi t) \sin (\pi t)=\frac{1}{2} \sin (2 \pi t) \\
F(s)=\mathcal{L}\{\cos (\pi t) \sin (\pi t)\}=\frac{1}{2} \mathcal{L}[\sin (2 \pi t)\} \\
= \\
\frac{1}{2} \frac{2 \pi}{s^{2}+(2 \pi)^{2}}
\end{gathered}
$$

$$
\mathcal{L}\left\{e^{4 t} \cos (\pi t) \sin (\pi t)\right\} \text { will be } F(s-4)
$$

$$
\mathcal{L}\left\{e^{u t} \cos (\pi t) \sin (\pi t)\right\}=\frac{\pi}{(s-4)^{2}+4 \pi^{2}}
$$

Evaluate

$$
\mathscr{L}^{-1}\left\{\frac{s}{(s+4)^{4}}\right\}
$$

we need to decompose $\frac{s}{(s+4)^{4}}$.
A partied faction decemp world have the form

$$
\frac{s}{(s+4)^{4}}=\frac{A}{s+4}+\frac{B}{(s+4)^{2}}+\frac{C}{(s+4)^{3}}+\frac{D}{(s+4)^{4}}
$$

Heres a shortcut

$$
\begin{aligned}
\frac{s}{(s+4)^{4}}=\frac{s+4-4}{(s+4)^{4}} & =\frac{s+4}{(s+4)^{4}}-\frac{4}{(s+4)^{4}} \\
& =\frac{1}{(s+4)^{3}}-\frac{4}{(s+4)^{4}}
\end{aligned}
$$

$$
\mathscr{L}^{-1}\left\{\frac{s}{(s+4)^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{(s+4)^{3}}\right\}-4 \mathscr{L}^{-1}\left\{\frac{1}{(s+4)^{4}}\right\}
$$

we need $\dot{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\dot{\mathcal{L}}\left\{\frac{1}{2!} \frac{2!}{s^{3}}\right\}=\frac{1}{2!} t^{2}$

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{3!} \frac{3!}{s^{4}}\right\}=\frac{1}{3!} t^{3}
$$

If $s-a=s+4$, than $a=-4$

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s}{(s+4)^{4}}\right\} & =\mathscr{L}^{-1}\left[\frac{1}{(s+4)^{3}}\right\}-4 \mathcal{L}^{-1}\left\{\frac{1}{(s+4)^{4}}\right\} \\
& =\frac{1}{2} t^{2} e^{-4 t}-\frac{4}{6} t^{3} e^{-4 t}
\end{aligned}
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Unit Step Function Notation

The unit step function is sometimes referred to as the Heaviside step function ${ }^{1}$. However, many reserve that name for the version of this function defined on the interval $(-\infty, \infty)$.

- An alternative notations include

$$
\mathscr{U}(t-a), \quad u_{a}(t), \quad u(t-a), \quad \text { and } \quad H(t-a) .
$$

- Restricting our focus to functions defined on $[0, \infty), f(t)=1$ and $f(t)=\mathscr{U}(t)$ are indistinguishable.

[^0]Piecewise Defined Functions
Verify that

$$
a^{>0}
$$

$$
f(t)=\left\{\begin{array}{l}
g(t), \quad 0 \leq t<a \\
h(t), \quad t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

We wart to show that these are equal for all $t \geqslant 0$. We have to consida the two intervals $0 \leqslant t<a$ and $t \geqslant a$.

Suppose $0 \leq t<a$. Then $u(t-a)=0$.

$$
\begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & =g(t)-g(t) \cdot 0+h(t) \cdot 0 \\
& =g(t) \text { as expected. }
\end{aligned}
$$

$$
f(t)=\left\{\begin{array}{l}
g(t), \quad 0 \leq t<a \\
h(t), \quad t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

Suppose $t \geqslant a$. Then $u(t-a)=1$.

$$
\begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & =g(t)-g(t) \cdot 1+h(t) \cdot 1 \\
& =h(t)
\end{aligned}
$$

Piecewise Defined Functions in Terms of \mathscr{U}
Write f on one line in terms of \mathscr{U} as needed

$$
f(t)= \begin{cases}e^{t}, & 0 \leq t<2 \\ t^{2}, & 2 \leq t<5 \\ 2 t & t \geq 5\end{cases}
$$

We con use $l l$ as a switch to turn on and off the pieces of the function along with adding in or subtracting off the pieces.

$$
\begin{aligned}
& f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5) \\
& \begin{array}{ccc}
\uparrow & i \\
\text { on off } \gamma \text { off } \quad \rho_{\text {on }}
\end{array} \\
& \text { October 25, } 2021 \quad 10 / 25
\end{aligned}
$$

$$
f(t)=e^{t}(u(t-0)-u(t-2))+t^{2}(u(t-2)-u(t-5))+2 t(u(t-5)-0)
$$

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
f(t)=1
$$

As another example,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

$$
y(1)=\frac{1}{5}
$$

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}}
$$

[^0]: ${ }^{1}$ Named after English mathematician Oliver Heaviside.

