October 25 Math 2306 sec. 54 Fall 2021

Section 15: Shift Theorems

Theorem: (translation in s) Suppose $\mathscr{L} \{f(t)\} = F(s)$. Then for any real number *a*

$$\mathscr{L}\left\{e^{at}f(t)\right\}=F(s-a).$$

In other words, if F(s) has an inverse Laplace transform, then

$$\mathscr{L}^{-1}\{F(s-a)\}=e^{at}\mathscr{L}^{-1}\{F(s)\}.$$

イロト イポト イヨト イヨト

Example: Evaluate

$$\mathscr{L}\left\{e^{4t}\cos(\pi t)\sin(\pi t)\right\}$$
we need to know $\mathcal{L}\left(\cos\left(\pi t | Sin(\pi t | S)\right) = F(s)\right)$
Recall $Sin ZO = 2 Sin O CosO$
 $\mathcal{L}\left(Sin(\mu t)\right) = \frac{k}{s^{2}+\mu^{2}}$
 $Cos(\pi t) Sin(\pi t) = \frac{1}{2} Sin(2\pi t)$
 $F(s) = \mathcal{L}\left(Cos(\pi t) Sin(\pi t)\right) = \frac{1}{2} \mathcal{L}\left(Sin(2\pi t)\right)$
 $= \frac{1}{2} \frac{2\pi}{s^{2}+(2\pi)^{2}}$
 $Cotober 25,2021 = 2/25$

 $\mathcal{L}\left(e^{Yt}G_{S}(\pi t)Sin(\pi t)\right)$ will be F(S-Y)

 $\mathcal{L}\left(e^{4t}C_{\sigma\sigma}(\pi t)\operatorname{Sir}(\pi t)\right) = \frac{\pi}{(s-4)^{2}+4\pi^{2}}$

Evaluate

$$\mathscr{L}^{-1}\left\{\frac{s}{(s+4)^4}\right\}$$

We need to decompose
$$\frac{s}{(s+y)^{y}}$$
.
A partial fraction decomp would have the
form
 $\frac{s}{(s+y)^{y}} = \frac{A}{s+y} + \frac{B}{(s+y)^{2}} + \frac{C}{(s+y)^{3}} + \frac{D}{(s+y)^{y}}$
Here's a short out

.

$$\frac{S}{(S+Y)^{Y}} = \frac{S+Y-Y}{(S+Y)^{Y}} = \frac{S+Y}{(S+Y)^{Y}} - \frac{Y}{(S+Y)^{Y}}$$
$$= \frac{1}{(S+Y)^{3}} - \frac{Y}{(S+Y)^{Y}} = \frac{1}{(S+Y)^{3}} - \frac{Y}{(S+Y)^{Y}}$$
October 25, 2021 4/25

 $\mathcal{L}\left(\frac{S}{(S+Y)^{4}}\right) = \mathcal{L}\left(\frac{1}{(S+Y)^{3}}\right) - 4\mathcal{L}\left(\frac{1}{(S+Y)^{4}}\right)$

we need $\mathcal{J}\left(\frac{1}{S^3}\right) = \mathcal{J}\left(\frac{1}{S^3}\right) = \frac{1}{2}\left(\frac{1}{S^3}\right) = \frac{1}{2}\left(\frac{1}{S^3}$ $\mathcal{J}\left(\frac{1}{5^{4}}\right) = \mathcal{J}\left(\frac{1}{3!}, \frac{3!}{5^{4}}\right) = \frac{1}{5!} t^{3}$

If s-a= 5+4, then a=-4

 $\mathcal{J}\left(\frac{s}{(s+u)^{4}}\right) = \mathcal{J}\left(\frac{1}{(s+u)^{3}}\right) - \gamma \mathcal{J}\left(\frac{1}{(s+u)^{4}}\right)$ $= \pm t^{2} \rho^{4} - \frac{4}{7} t^{3} \rho^{-4} t^{3} \rho^{-4}$

The Unit Step Function

Let $a \ge 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$\mathscr{U}(t-a) = \left\{ egin{array}{cc} 0, & 0 \leq t < a \ 1, & t \geq a \end{array}
ight.$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

October 25, 2021

6/25

Unit Step Function Notation

The unit step function is sometimes referred to as the *Heaviside step* function¹. However, many reserve that name for the version of this function defined on the interval $(-\infty, \infty)$.

An alternative notations include

$$\mathscr{U}(t-a), \quad u_a(t), \quad u(t-a), \text{ and } H(t-a).$$

Restricting our focus to functions defined on $[0, \infty)$, f(t) = 1 and $f(t) = \mathscr{U}(t)$ are indistinguishable.

¹Named after English mathematician Oliver Heaviside, and the second se

Piecewise Defined Functions

Verify that

$$f(t) = \begin{cases} g(t), & 0 \le t < a \\ h(t), & t \ge a \end{cases} = g(t) - g(t)\mathscr{U}(t-a) + h(t)\mathscr{U}(t-a)$$

a70

Suppose 0 ≤ t < a. Then U(t-a) = 0.

 $g(t) - g(t)\mathcal{U}(t-a) + h(t)\mathcal{U}(t-a) = g(t) - g(t) \cdot O + h(t) \cdot O$ $= g(t) \quad as \quad expected \\ expected \quad expec$

October 25, 2021 8/25

$$f(t) = \begin{cases} g(t), & 0 \le t < a \\ h(t), & t \ge a \end{cases} = g(t) - g(t)\mathscr{U}(t-a) + h(t)\mathscr{U}(t-a)$$

Suppose tra. Then U(t-a)= 1.

 $g(k) - g(k)n(t-a) + h(t)n(t-a) = g(t) - g(k) + h(t) \cdot 1$

= h(t) as expected.

Piecewise Defined Functions in Terms of ${\mathscr U}$

Write f on one line in terms of \mathcal{U} as needed

$$f(t) = \left\{ egin{array}{cc} e^t, & 0 \leq t < 2 \ t^2, & 2 \leq t < 5 \ 2t & t \geq 5 \end{array}
ight.$$

$$f(t) = e^{t} - e^{t} u(t-z) + t^{2} u(t-z) - t^{2} u(t-s) + z t u(t-s)$$

October 25, 2021

10/25

 $f(t) = e^{t}(u(t-s)-u(t-z)) + t^{2}(u(t-z)-u(t-z)) + zt(u(t-z)-o)$

Translation in t

Given a function f(t) for $t \ge 0$, and a number a > 0

$$f(t-a)\mathscr{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ f(t-a), & t \ge a \end{cases}$$

Figure: The function $f(t - a)\mathcal{U}(t - a)$ has the graph of *f* shifted *a* units to the right with value of zero for *t* to the left of *a*.

イロト 不得 トイヨト イヨト 二日

October 25, 2021

13/25

Theorem (translation in *t*) If $F(s) = \mathscr{L}{f(t)}$ and a > 0, then

$$\mathscr{L}{f(t-a)}\mathscr{U}(t-a)} = e^{-as}F(s).$$

In particular,

$$\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-as}}{s}.$$

October 25, 2021

14/25

< 日 > < 同 > < 回 > < 回 > < 回 > <

As another example,

$$\mathscr{L}\lbrace t^n\rbrace = \frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\lbrace (t-a)^n \mathscr{U}(t-a)\rbrace = \frac{n!e^{-as}}{s^{n+1}}.$$