October 26 Math 2306 sec. 51 Fall 2022

Let's peek at how the Laplace transform will be used to solve ODEs.

If $f(t)$ is defined on $[0, \infty)$, is differentiable, and has Laplace transform $F(s)=\mathscr{L}\{f(t)\}$, then*

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Use this result to solve the initial value problem

* See the worksheet 8 from October 24.

$$
\begin{aligned}
& y^{\prime}(t)+2 y(t)=4, \quad y(0)=1 \\
& \text { Let } \mathscr{L}\{y(t)\}=\Psi(s)
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}(t)+2 y(t)=4, \quad y(0)=1 \\
& \mathcal{L}\left\{y^{\prime}+2 y\right\}=\mathcal{L}\{4\} \\
& \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=4 \mathscr{L}\{1\} \\
& S Y(s)-y(0)+2 Y(s)=\frac{4}{5}
\end{aligned}
$$

Use $y(0)=1$ and isolate $Y(s)$

$$
\begin{aligned}
& s Y(s)-1+2 Y(s)=\frac{4}{s} \\
& s \Psi(s)+2 Y(s)=\frac{4}{s}+1\left(\frac{s}{s}\right) \\
& (s+2) Y(s)=\frac{+4 s}{s}
\end{aligned}
$$

$$
\Psi(s)=\frac{4+s}{s(s+2)}
$$

This is
the Laplace.
we need $y(t)=\mathscr{L}^{-1}\{Y(s)\}$. transform to the solus on
the Partide factions

$$
\begin{aligned}
\frac{4+s}{s(s+2)} & =\frac{A}{s}+\frac{B}{s+2} s(s+2) \\
4+s & =A(s+2)+B s
\end{aligned}
$$

set $s=0 \quad 4=2 A \Rightarrow A=2$

$$
\begin{aligned}
& s=-2 \quad 2=-2 \beta \Rightarrow \beta=-1 \\
& Y(s)=\frac{2}{s}-\frac{1}{s+2}
\end{aligned}
$$

The solution to the IVP

$$
y(t)=\frac{\mathscr{L}^{-1}\{Y(s)\}=2 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}}{y(t)=2-e^{-2 t}}
$$

Section 15: Shift Theorems

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

We can state this in terms of the inverse transform. If $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\} .
$$

We call this a translation (or a shift) in s theorem.

Example:

Suppose $f(t)$ is a function whose Laplace transform ${ }^{1}$

$$
F(s)=\mathscr{L}\{f(t)\}=\frac{1}{\sqrt{s^{2}+9}}
$$

Evaluate

$$
\begin{array}{r}
\mathscr{L}\left\{e^{-2 t} f(t)\right\}=\frac{1}{\sqrt{(s+2)^{2}+9}} \\
F(s-(-2))=F(s+2)
\end{array}
$$

${ }^{1}$ It's not in our table, but this is an actual function known as a Bessel function:

Examples

Evaluate: $\mathscr{L}\left\{t e^{t}\right\}=\frac{1}{(s-1)^{2}}$

$$
F(s)=\mathscr{L}\{t\}=\frac{1}{s^{2}} \quad a=1 \quad F(s-1)
$$

Evaluate: $\mathscr{L}\left\{t^{8} e^{-4 t}\right\}=\frac{8!}{(s+4)^{9}}$

$$
F(s)=\mathcal{L}\left\{t^{8}\right\}=\frac{8!}{s^{9}}, a=-4 \quad F(s-(-4))=F(s+4)
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}$

Partial fractions

$$
\frac{-s^{2}+3 s+1}{s(s-1)^{2}}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}}
$$

Clear fractions

$$
\begin{aligned}
-s^{2}+3 s+1 & =A(s-1)^{2}+B s(s-1)+C s \\
& =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
-s^{2}+3 s+1 & =(A+B) s^{2}+(-2 A-B+C) s+A
\end{aligned}
$$

$$
\begin{array}{cc}
A+B=-1 & B=-1-A=-2 \\
-2 A-B+C=3 & C=3+B+2 A=3-2+2(1)=3 \\
A=1 & =\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \\
\frac{-s^{2}+3 s+1}{s(s-1)^{2}} \\
\frac{-s^{2}+3 s+1}{s(s-1)^{2}}=\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}} \\
\mathscr{L}^{-1}\left\{\frac{-s^{2}+3 s+1}{s(s-1)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathscr{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\} \\
\mathscr{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}=e^{1 t} \mathscr{L}^{-1}\left\{\frac{1}{s^{2}}\right\}
\end{array}
$$

$$
\mathscr{L}^{-1}\left\{\frac{-s^{2}+3 s+1}{s(s-1)^{2}}\right\}=1-2 e^{t}+3 e^{t} t
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions $\quad \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}$
Verify that

$$
\begin{aligned}
f(t) & = \begin{cases}g(t), \quad 0 \leq t<a \\
h(t), & t \geq a\end{cases} \\
& =g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)
\end{aligned}
$$

well consider the two intervals

$$
0 \leqslant t<a \text { and } t \geqslant a
$$

Suppose $0 \leq t<a$

$$
g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)=g(t)-g(t) \cdot 0+h(t) \cdot 0=g(t)
$$

$$
\left\{\begin{array}{l}
g(t), \quad 0 \leq t<a \\
h(t), \quad t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

Suppose $t \geqslant a$

$$
\begin{aligned}
& g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)= \\
& g(t)-g(t)(1)+h(t)(1)=g(t)-g(t)+h(t)=h(t)
\end{aligned}
$$

So this expansion is $f(t)$ on $0 \leq t<a$ and $t \geqslant a$.

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Example $f(t)= \begin{cases}e^{t}, & 0 \leq t<2 \\ t^{2}, & 2 \leq t<5 \\ 2 t & t \geq 5\end{cases}$
Rewrite the function f in terms of the unit step function.

$$
f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5)
$$

Lets verify:

$$
\begin{aligned}
& 0 \leq t<2 \quad f(t)=e^{t} \\
& u(t-2)=0 \\
& u(t-5)=0
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5) \\
& 2 \leq t<s \\
& u(t-2)=1 \quad f(t)=e^{t}-e^{t}+t^{2}=t^{2} \\
& u(t-s)=0 \\
& t \geqslant 5 \\
& u(t-2)=1 \\
& u(t-s)=1
\end{aligned}
$$

