October 27 Math 2306 sec. 52 Fall 2021

Section 15: Shift Theorems

Theorem: (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

In other words, if $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\}
$$

Translation in t

We defined the unit step function

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

And then we considered the product $f(t-a) \mathscr{U}(t-a)$ for f defined on $[0, \infty)$ and $a>0$.

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

This is the same as

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)
$$

Find $\mathscr{L}\{\mathscr{U}(t-a)\} \quad$ assume $a>0$

$$
u(t-a)= \begin{cases}0, & 0 \leqslant t<a \\ 1, & t \geqslant a\end{cases}
$$

By definition

$$
\begin{aligned}
& \mathscr{L}\{u(t-a)\}=\int_{0}^{\infty} e^{-s t} u(t-a) d t \\
&= \int_{0}^{a} e^{-s t} \cdot 0 d t+\int_{a}^{\infty} e^{-s t} \cdot 1 d t \\
&=\int_{a}^{\infty} e^{-s t} d t \quad \text { substitution } \\
& \text { set } r=t-a \\
& d r=d t
\end{aligned}
$$

$$
r=t-a \Rightarrow t=r+a
$$

when $t=a, \quad \tau=a-a=0$
when $t \rightarrow \infty, \tau \rightarrow \infty$

$$
\begin{aligned}
\mathscr{L}\{u(t-a)\} & =\int_{0}^{\infty} e^{-s(\tau+a)} d \tau \quad e^{-s(\tau+a)}=e^{-s \tau} \cdot e^{-s a} \\
& =e^{-a s} \int_{0}^{\infty} e^{-s \tau} d \tau \\
& =e^{-a s} e^{-s \tau} \\
& =e^{-a s}\left(\frac{1}{s}\right)=\frac{e^{-a s}}{s}
\end{aligned}
$$

Example
Find the Laplace transform $\mathscr{L}\{f(t)\}$ where

$$
f(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write f in terms of unit step functions.

$$
\begin{aligned}
f(t) & =1-1 u(t-1)+t u(t-1) \\
& =1+(-1+t) u(t-1) \\
& =1+(t-1) u(t-1)
\end{aligned}
$$

Consida $(t-1) u(t-1)$

Note if $h(t)=t$ then

$$
h(t-1)=t-1
$$

so $(t-1) u(t-1)$ would be
$h(t-1) u(t-1)$ if

$$
h(t)=t
$$

Example Continued...
(b) Now use the fact that $f(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{f\}$.

$$
\begin{aligned}
& \mathscr{L}\{f(t)\}=\mathscr{L}\{1+(t-1) u(t-1)\} \\
&=\mathscr{L}\{1\}+\mathscr{L}\{(t-1) u(t-1)\} \\
& \text { findion } t \\
&=\frac{1}{s}+e^{-s}\left(\frac{1}{s^{2}}\right)=\frac{1}{s}+\frac{e^{-s}}{s^{2}} \\
& \mathcal{L}\{(t-1) u(t-1)\}=e^{-1 s} \mathcal{L}\{t\}
\end{aligned}
$$

A Couple of Useful Results
Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

$$
g(t)=g(t+a-a)
$$

Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathscr{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

$$
\begin{aligned}
& =e^{-\frac{\pi}{2} s} \mathcal{L}\{-\sin t\}=-e^{-\frac{\pi}{2} s}\left(\frac{1}{s^{2}+1^{2}}\right) \\
& =\frac{-e^{\frac{-\pi}{2} s}}{s^{2}+1}
\end{aligned}
$$

$$
\cos (t+\pi / 2)=\cos t \cos \frac{\pi}{2}-\sin t \sin \frac{\pi}{2}=-\sin t
$$

A Couple of Useful Results
The inverse form of this translation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$.

$$
a=2
$$

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=f(t-2) \mathfrak{U}(t-2)$
we need to know what $f(t)$ is.
$f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$ This requires partial fractions.

$$
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}
$$

$$
1=A(s+1)+B s
$$

set $s=0,1=A \Rightarrow A=1$
set $s=-1,1=B(-1) \Rightarrow B=-1$

$$
\begin{aligned}
f(t)=\mathscr{L}^{-1}\left\{\frac{1}{s(s+1)}\right\} & =\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}-\mathscr{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
& =1-e^{-t} \\
\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\} & =f(t-2) u(t-2) \\
& =\left(1-e^{-(t-2)}\right) u(t-2)
\end{aligned}
$$

Evaluate the Laplace tranform of the function pictured

convert to algebraic

$$
f(t)= \begin{cases}t, & 0 \leq t<1 \\ 1, & t \geq 1 .\end{cases}
$$

Figure: Graph of $y=f(t)$. Note: This is exercise 2(b) from section 13 of the workbook.

Convert to form with U.

$$
f(t)=t-t u(t-1)+1 u(t-1)
$$

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\mathcal{L}\{t-t u(t-1)+u(t-1)\} \\
& =\mathcal{L}\{t\}-\mathcal{L}\{t u(t-1)\}+\mathcal{L}\{u(t-1)\} \\
& =\frac{1}{s^{2}}-e^{-1 s} \mathcal{L}\{t+1\}+\frac{e^{-s}}{s} \\
& =\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)+\frac{e^{-s}}{s} \\
& =\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}}
\end{aligned}
$$

Hene $g(t)=t$ ard $a=1 \quad g(t+1)=t+1$

$$
\mathcal{L}[g(t) u(t-a)\}=e^{-a s} \mathcal{L}\{g(t+a)\}
$$

