October 27 Math 2306 sec. 52 Spring 2023

Section 13: The Laplace Transform

A quick word about functions of 2-variables:
Suppose $G(s, t)$ is a function of two independent variables (s and t) defined over some rectangle in the plane $a \leq t \leq b, c \leq s \leq d$. If we compute an integral with respect to one of these variables, say t,

$$
\int_{\alpha}^{\beta} G(s, t) d t
$$

- the result is a function of the remaining variable s, and
- the variable s is treated as a constant while integrating with respect to t.

For Example...

Assume that $s \neq 0$ and $b>0$. Compute the integral

$$
\begin{aligned}
\int_{0}^{b} e^{-s t} d t= & \left.\frac{1}{-s} e^{-s t}\right|_{0} ^{b}=\frac{-1}{s} e^{-s b}-\frac{-1}{s} e^{-s(0)} \\
& =\frac{-1}{s} e^{-s b}+\frac{1}{s} \\
& =\frac{1}{s}-\frac{1}{s} e^{-s b}
\end{aligned}
$$

Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t
$$

- The function K is called the kernel of the transformation.
- The limits a and b may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t
$$

The Laplace Transform

Definition:

Let $f(t)$ be piecewise continuous on $[0, \infty)$. The Laplace transform of f, denoted $\mathscr{L}\{f(t)\}$ is given by.

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t .=F(s)
$$

We will often use the upper case/lower case convention that $\mathscr{L}\{f(t)\}$ will be represented by $F(s)$. The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Remark 1: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.
Remark 2: In general, s is considered a complex variable. We will generally take s to be real, but this will not restrict our use of the Laplace transform.

Limits at Infinity $e^{-s t}$

If $s>0$, evaluate

$$
\begin{aligned}
\lim _{t \rightarrow \infty} e^{-s t} & =0 \\
-s t & \rightarrow-\infty
\end{aligned}
$$

If $s<0$, evaluate

$$
\begin{aligned}
\lim _{t \rightarrow \infty} e^{-s t} & =\infty \\
-s t & \rightarrow+\infty
\end{aligned}
$$

Find ${ }^{1}$ the Laplace transform of $f(t)=1$.
By definition $\mathcal{L}\{1\}=\int_{0}^{\infty} e^{-s t} \cdot 1 d t$
If $s=0$, the integral becomes $\int_{0}^{\infty} 1 d t$

$$
\int_{0}^{\infty} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} d t=\left.\lim _{b \rightarrow \infty} t\right|_{0} ^{b}=\lim _{b \rightarrow \infty} b=\infty
$$

The integral is divergent, hence zero is not in the domain of $\mathscr{L}\{1\}$.

For $s \neq 0$,

$$
\mathcal{L}[1\}=\int_{0}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t
$$

${ }^{1}$ Unless stated otherwise, the domain for each example is $[0, \infty)$. That is, f is defined for $0 \leq t<\infty$.

$$
=\lim _{b \rightarrow \infty} \frac{1}{5}-\frac{1}{5} e^{-s b}=\frac{1}{5}-\frac{1}{5} \cdot 0=\frac{1}{5}
$$

only if $s>0$.
The integral divenges if $s<0$.
$\mathcal{L}\{1\}=\frac{1}{s}$ wi domain $s>0$.

Find the Laplace transform of $f(t)=t$.
By definition, $\mathcal{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
For $s=0$, we get $\int_{0}^{\infty} t d t$ which diverges. Zero is not in the domain of $\mathcal{L}\{t\}$.

For $s \neq 0$,

$$
\begin{aligned}
& \mathcal{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t \\
& =\left.\frac{-1}{s} t e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{1}{5} e^{-s t} d t
\end{aligned}
$$

Int. by parks ut $\quad d u=d t$

$$
v=\frac{-1}{s} e^{-s t} \quad d v=e^{-s t} d t
$$

$s>0$ is required for convergence

$$
=0-0+\frac{1}{s} \underbrace{\int_{0}^{\infty} e^{-s t} d t}_{\mathcal{L}\{1\}}=\frac{1}{s}\left(\frac{1}{s}\right)=\frac{1}{s^{2}}
$$

Hence $\mathcal{L}\{t\}=\frac{1}{s^{2}} \quad \omega 1$ domain $s>0$.

A piecewise defined function
Find the Laplace transform of f defined by

$$
f(t)= \begin{cases}2 t, & 0 \leq t<10 \\ 0, & t \geq 10\end{cases}
$$

By definition $\mathscr{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t$

$$
\begin{aligned}
\mathscr{L}[f(t)) & =\int_{0}^{10} e^{-s t} f(t) d t+\int_{10}^{\infty} e^{-5 t} f(t) d t \\
& =\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} e^{-s t}(0) d t
\end{aligned}
$$

For $s=0$, we get $\int_{0}^{10} 2 t d t=\left.t^{2}\right|_{0} ^{10}=100$

For $s \neq 0$ we hove

$$
\begin{aligned}
& \int_{0}^{10} 2 t e^{-5 t} d t=-\left.\frac{2}{5} t e^{-5 t}\right|_{0} ^{10}+\int_{0}^{\infty} \frac{2}{5} e^{-s t} d t \\
& =\frac{-2}{s}(10) e^{-s(10)}-0+\left.\frac{2}{s}\left(-\frac{1}{s}\right) e^{-s t}\right|_{0} ^{10} \\
& =\frac{-20}{5} e^{-105}-\frac{2}{s^{2}}\left(e^{-s(10)}-e^{0}\right) \\
& =\frac{2}{s^{2}}-\frac{20}{5} e^{-10 s}-\frac{2}{s^{2}} e^{-105} \\
& \mathcal{L}\{f(t)\}= \begin{cases}100, & s=0 \\
\frac{2}{s^{2}}-\frac{20}{5} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}, & s \neq 0\end{cases}
\end{aligned}
$$

