October 28 Math 2306 sec. 52 Fall 2022

Section 15: Shift Theorems

Theorem: Suppose $\mathscr{L} \{f(t)\} = F(s)$. Then for any real number a $\mathscr{L} \{e^{at}f(t)\} = F(s-a).$

We can state this in terms of the inverse transform. If F(s) has an inverse Laplace transform, then

$$\mathscr{L}^{-1}\{F(s-a)\}=e^{at}\mathscr{L}^{-1}\{F(s)\}.$$

October 26, 2022 1/15

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Unit Step Function

Let $a \ge 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$\mathscr{U}(t-a) = \left\{ egin{array}{cc} 0, & 0 \leq t < a \ 1, & t \geq a \end{array}
ight.$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

October 26, 2022

2/15

Piecewise Defined Functions

We can use the unit step function to write piecewise defined functions in a format convenient for taking Laplace transforms. For example, suppose $0 < a < b < \infty$ and

$$f(t) = \begin{cases} f_1(t), & 0 \le t < a \\ f_2(t), & a \le t < b \\ f_3(t), & b \le t < \infty \end{cases}$$

We can write f in the form

$$f(t) = f_{1}(t) - f_{1}(t)\mathcal{U}(t-a) + f_{2}(t)\mathcal{U}(t-a) - f_{2}(t)\mathcal{U}(t-b) + f_{3}(t)\mathcal{U}(t-b)$$

= $f_{1}(t)(1-u(t-a)) + f_{2}(t)(u(t-a)-u(t-b)) + f_{3}(t)u(t-b)$
= $f_{1}(t)(1-u(t-a)) + f_{2}(t)(u(t-a)-u(t-b)) + f_{3}(t)u(t-b)$

October 26, 2022 3/15

Translation in t

Given a function f(t) for $t \ge 0$, and a number a > 0

$$f(t-a)\mathscr{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ f(t-a), & t \ge a \end{cases}$$

Figure: The function $f(t - a)\mathcal{U}(t - a)$ has the graph of *f* shifted *a* units to the right with value of zero for *t* to the left of *a*.

イロト イポト イヨト イヨト 一日

October 26, 2022

4/15

Find $\mathscr{L}{\mathscr{U}(t-a)}$ for a > 0.

By definition,

$$\mathscr{L}\left\{\mathscr{U}(t-a)\right\} = \int_{0}^{\infty} e^{-st} \mathscr{U}(t-a) dt$$

$$= \int_{0}^{a} e^{-st} u(t-a) dt + \int_{0}^{\infty} e^{-st} u(t-a) dt$$

$$= \int_{0}^{a} e^{-st} (0) dt + \int_{0}^{\infty} e^{-st} (1) dt$$

$$= \int_{0}^{\infty} e^{-st} dt \qquad \text{conversance}$$

$$\mathscr{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ 1, & a \le t < \infty \end{cases}$$

.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (translation in *t*)

If
$$F(s) = \mathscr{L}{f(t)}$$
 and $a > 0$, then
 $\mathscr{L}{f(t-a)\mathscr{U}(t-a)} = e^{-as}F(s).$

A special case is
$$f(t) = 1$$
. We just found
 $\mathscr{L}{\mathscr{U}(t-a)} = e^{-as}\mathscr{L}{1} = \frac{e^{-as}}{s}.$

We can state this in terms of the inverse transform as

$$\mathscr{L}^{-1}\{e^{-as}F(s)\}=f(t-a)\mathscr{U}(t-a)$$

October 26, 2022 7/15

Example

Find the Laplace transform $\mathscr{L} \{f(t)\}$ where

$$f(t) = \begin{cases} 1, & 0 \le t < 1 \\ t, & t \ge 1 \end{cases}$$

(a) First write *f* in terms of unit step functions.

$$f(t) = 1 - 1u(t-1) + tu(t-1)$$

= 1 + (-1 + t)u(t-1)
$$f(t) = 1 + (t-1)u(t-1)$$

Note: 1f f₁(t) = t then f₁(t-1) = t-1

イロト イヨト イヨト イヨト

э

8/15

October 26, 2022

Example Continued... $\mathscr{L}{f(t-a)\mathscr{U}(t-a)} = e^{-as}F(s).$

(b) Now use the fact that $f(t) = 1 + (t-1)\mathcal{U}(t-1)$ to find $\mathcal{L}{f}$.

$$\mathcal{L}(f(t)) = \mathcal{L}(1) + \mathcal{L}(t-1)u(t-1)$$

= $\frac{1}{5} + \frac{1}{5^{2}}e^{15}$

* for $f_{(t)} = t$, $\mathcal{L}(f_{(t)}) = \mathcal{L}(t) = \frac{1}{S^2} = F(s)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Alternative Form for Translation in t

It is often the case that we wish to take the transform of a product of the form

 $g(t)\mathscr{U}(t-a)$

in which the function g is not translated.

The main theorem statement

$$\mathscr{L}{f(t-a)\mathscr{U}(t-a)} = e^{-as}F(s).$$

can be restated as

$$\mathscr{L}\{g(t)\mathscr{U}(t-a)\}=e^{-as}\mathscr{L}\{g(t+a)\}.$$

This is based on the observation that

$$g(t)=g((t+a)-a).$$

< ロ > < 同 > < 回 > < 回 >

October 26, 2022

10/15

Example

$$\mathscr{L}\{g(t)\mathscr{U}(t-a)\} = e^{-as}\mathscr{L}\{g(t+a)\}$$

Example: Find $\mathscr{L}\{\cos t\mathscr{U}\left(t-\frac{\pi}{2}\right)\} = \mathcal{C}^{\frac{\pi}{2}s}\mathscr{L}\left\{\mathcal{C}_{os}\left(t+\frac{\pi}{2}\right)\right\}$

 $C_{oS}(t+\underline{\pi}) = C_{oS} + C_{oS} + C_{oS} + S_{oT} + S_$ October 26, 2022 11/15

Cos (A+B) = GSA GSB - SinA SinB

Sin (A+B) = Sin A GSB + Sin B GSA

October 26, 2022 12/15

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○

Example

$$\mathcal{L}^{-1}\left\{e^{-as}F(s)\right\} = f(t-a)\mathcal{U}(t-a)$$
Example: Find $\mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s(s+1)}\right\} = \tilde{\mathcal{I}}\left\{\frac{e^{2s}}{e^{2s}} \frac{1}{s(s+1)}\right\}$

$$F(s) = \frac{1}{s(s+1)} \quad \text{we} \quad \text{nee} \quad f(t) = \tilde{\mathcal{I}}\left(F(s)\right)$$
Particle fractions
$$\frac{1}{s(s+1)} = \frac{A}{s} + \frac{B}{s+1} \implies 1 = A(s+1) + Bs$$

$$s = 0 \quad 1 = A$$

$$s = 0 \quad 1 = A$$

$$s = 1 \quad 1 = \frac{1}{s(s+1)} =$$

$$F(s) = \frac{1}{5} - \frac{1}{5+1}$$

$$f(t) = \tilde{\mathcal{I}}'\left(\frac{1}{5} - \frac{1}{5+1}\right) = \tilde{\mathcal{I}}'\left(\frac{1}{5}\right) - \tilde{\mathcal{I}}'\left(\frac{1}{5+1}\right)$$

$$f(t) = 1 - \tilde{e}^{t}$$

$$\mathcal{L}^{-1}\left\{e^{-as}F(s)\right\} = f(t-a)\mathcal{U}(t-a)$$

$$\mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s(s+1)}\right\} = \tilde{\mathcal{I}}'\left(\frac{e^{2s}}{s(s+1)}\right)$$

ß

 $= \left(1 - \bar{e}^{(t-2)}\right) \mathcal{U}(t-2)$

October 26, 2022 14/15

イロト イポト イヨト イヨト 二日