October 28 Math 2306 sec. 52 Fall 2022

Section 15: Shift Theorems

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

We can state this in terms of the inverse transform. If $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\}
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions

We can use the unit step function to write piecewise defined functions in a format convenient for taking Laplace transforms. For example, suppose $0<a<b<\infty$ and
$f(t)= \begin{cases}f_{1}(t), & 0 \leq t<a \\ f_{2}(t), & a \leq t<b \\ f_{3}(t), & b \leq t<\infty\end{cases}$
We can write f in the form

$$
\begin{aligned}
& f(t)=f_{1}(t)-f_{1}(t) \mathscr{U}(t-a)+f_{2}(t) \mathscr{U}(t-a)-f_{2}(t) \mathscr{U}(t-b)+f_{3}(t) \mathscr{U}(t-b) \\
&=f_{1}(t)(1-u(t-a))+f_{2}(t)(u(t-a)-u(t-b))+f_{3}(t) u(t-b)
\end{aligned}
$$

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Find $\mathscr{L}\{\mathscr{U}(t-a)\}$ for $a>0$.
By definition,

$$
\begin{aligned}
\mathscr{L}\{\mathscr{U}(t-a)\} & =\int_{0}^{\infty} e^{-s t} \mathscr{U}(t-a) d t \\
& =\int_{0}^{a} e^{-s t} u(t-a) d t+\int_{a}^{\infty} e^{-s t} u(t-a) d t \\
& =\int_{0}^{a} e^{-s t}(0) d t+\int_{a}^{\infty} e^{-s t}(1) d t \\
& =\int_{a}^{\infty} e^{-s t} d t \\
\mathscr{U}(t-a) & = \begin{cases}0, & 0 \leq t<a \\
1, & a \leq t<\infty\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{1}{-s} e^{-s t}\right|_{a} ^{\infty} \\
& =\frac{-1}{s}\left(0-e^{-s(a)}\right)=\frac{e^{-a s}}{s} \quad s>0
\end{aligned}
$$

Theorem (translation in t)

$$
\begin{aligned}
& \text { If } F(s)=\mathscr{L}\{f(t)\} \text { and } a>0 \text {, then } \\
& \qquad \mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
\end{aligned}
$$

A special case is $f(t)=1$. We just found
$\mathscr{L}\{\mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{1\}=\frac{e^{-a s}}{s}$.
We can state this in terms of the inverse transform as

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) .
$$

Example
Find the Laplace transform $\mathscr{L}\{f(t)\}$ where

$$
f(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write f in terms of unit step functions.

$$
\begin{aligned}
f(t) & =1-1 u(t-1)+t u(t-1) \\
& =1+(-1+t) u(t-1) \\
& f(t)=1+(t-1) u(t-1)
\end{aligned}
$$

Note: If $f_{1}(t)=t$ then $f_{1}(t-1)=t-1$

Example Continued...

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

(b) Now use the fact that $f(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{f\}$.

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\mathcal{L}[1\}+\mathcal{L}\{(t-1) u(t-1)\} \\
& =\frac{1}{s}+\frac{1}{s^{2}} e^{-1 s}
\end{aligned}
$$

* for $f_{1}(t)=t, \mathscr{L}\left\{f_{1}(t)\right\}=\mathscr{L}\{t\}=\frac{1}{s^{2}}=F(s)$

Alternative Form for Translation in t

It is often the case that we wish to take the transform of a product of the form

$$
g(t) \mathscr{U}(t-a)
$$

in which the function g is not translated.
The main theorem statement

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s)
$$

can be restated as

$$
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}
$$

This is based on the observation that

$$
g(t)=g((t+a)-a)
$$

Example

$$
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}
$$

Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathcal{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

$$
\begin{aligned}
& =e^{-\frac{\pi}{2} s} \mathscr{L}(-\sin t) \\
& =-e^{-\frac{\pi}{2} s}\left(\frac{1}{s^{2}+1^{2}}\right)=\frac{-e^{-\frac{\pi}{2} s}}{s^{2}+1}
\end{aligned}
$$

$$
\cos \left(t+\frac{\pi}{2}\right)=\cos t \cos \pi / 2-\sin t \sin \frac{\pi}{2}=-\sin t
$$

$$
\begin{aligned}
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \sin (A+B)=\sin A \cos B+\sin B \cos A
\end{aligned}
$$

Example

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)
$$

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=\mathscr{L}^{-1}\left\{e^{-2 s} \frac{1}{s(s+1)}\right\}$

$$
F(s)=\frac{1}{s(s+1)} \text { we need } f(t)=\mathscr{L}^{-1}[F(s)\}
$$

partial fractions

$$
\begin{aligned}
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1} \Rightarrow \quad 1 & =A(s+1)+B_{s} \\
& s=0 \quad 1=A \\
& s=-1 \quad 1=-B
\end{aligned}
$$

$$
\begin{aligned}
& F(s)=\frac{1}{s}-\frac{1}{s+1} \\
& f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left[\frac{1}{s+1}\right\} \\
& f(t)=1-e^{-t} \\
& a^{\prime \prime} \\
& \mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) \\
& \mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=\mathscr{L}^{-1}\left\{e^{-2 s} \frac{1}{s(s+1)}\right\} \\
&\left(1-e^{-(t-2)}\right) ひ(t-2)
\end{aligned}
$$

