October 2 Math 2306 sec. 52 Spring 2023

Section 8: Homogeneous Equations with Constant Coefficients
Consider the linear, homogeneous ODE with constant coefficients,

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0 .
$$

The characteristic equation for this ODE is the $n^{\text {th }}$ degree polynomial equation

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0 .
$$

Remark: We keep in mind that every fundamental solution set for the $n^{\text {th }}$ order ODE will consist of n linearly independent solutions.

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

Solutions for Real Roots

If m is a real root of multiplicity k of the characteristic equation, then there are k linearly independent solutions of the ODE

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

Solutions for Complex Conjugate Roots

If $\alpha \pm i \beta$ is a complex conjugate pair of solutions, each of multiplicity k, of the characteristic equation, then there are $2 k$ linearly independent solutions of the ODE

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Example

Consider the ODE

$$
y^{(6)}-6 y^{(4)}+104 y^{\prime \prime \prime}+9 y^{\prime \prime}-312 y^{\prime}+2704 y=0 .
$$

The characteristic equation is

$$
m^{6}-6 m^{4}+104 m^{3}+9 m^{2}-312 m+2704=0
$$

which factors as

$$
\left((m-2)^{2}+9\right)^{2}(m+4)^{2}=0 .
$$

Find the general solution.
The fundamental solution set will have 6 lin. independent solutions,

$$
\begin{gathered}
\left((m-2)^{2}+9\right)^{2}(m+4)^{2}=0 \\
((m-2)+9)^{2}=0 \text { or }(m+4)^{2}=0 \\
(m+4)^{2}=0 \Rightarrow m+4=0 \Rightarrow m=-4 \text { a double rot }
\end{gathered}
$$

Two solutions are

$$
y_{1}=e^{-4 x} \quad \text { and } \quad y_{2}=x e^{-4 x}
$$

$$
\begin{aligned}
& \left((m-2)^{2}+9\right)^{2}=0 \quad \Rightarrow \quad(m-2)^{2}+9=0 \\
& \quad(m-2)=-9 \\
& m-2= \pm \sqrt{-9}= \pm 3 i \\
& m=2 \pm 3 i \text { Double roots }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=2, \quad \beta=3 \\
& y_{3}=e^{2 x} \cos (3 x), y_{4}=e^{2 x} \sin (3 x) \\
& y_{5}=x e^{2 x} \cos (3 x), y_{6}=x e^{2 x} \sin (3 x)
\end{aligned}
$$

The geneal solution is

$$
\left.y=c_{1} e^{-4 x}+c_{2} x e^{-4 x}+c_{3} e^{2 x} \cos (3 x)+c_{4} e^{2 x} \sin (3 x)+c_{5} x e^{2 x} \cos (3 x)+c_{6} x e^{2 x} \sin (3 x)\right\}
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, $e^{m \times}, m$-constant
- sines and/or cosines, $\cos (k x)$, or $\sin (k x) \quad k$-कnstant
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example ${ }^{1}$
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

The left side is constant coef and the right side is a $1^{\text {st }}$ degree polononie, $g(x)=8 x+1$.
we start by assuring that maybe y_{p} is also a $1^{\text {st }}$ degree polynomid. sit

$$
y_{p}=A x+B
$$

for some constants A and B.
${ }^{1}$ We're only ignoring the y_{c} part to illustrate the process.

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

Sat $y_{p}=A x+B$ sub this in

$$
\begin{aligned}
& y_{p}^{\prime}=A \\
& y_{p}^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{gathered}
y_{p}^{\prime \prime}-4 y p^{\prime}+4 y_{p}=8 x+1 \\
0-4(A)+4(A x+B)=8 x+1 \\
4 A x+(-4 A+4 B)=8 x+1
\end{gathered}
$$

Match like terms.

$$
\begin{aligned}
4 A & =8 \\
-4 A+4 B & =1
\end{aligned}
$$

Solve this system

$$
\begin{gathered}
A=2, \quad 4 B=1+4 A=1+4 \cdot 2=9 \\
B=\frac{9}{4}
\end{gathered}
$$

we found a particular solution $y_{p}=2 x+\frac{9}{4}$

To find y_{c}, solve $y_{c}{ }^{\prime \prime}-4 y_{c}^{\prime}+4 y_{c}=0$
Char. eqn $m^{2}-4 m+4=0 \Rightarrow(m-2)^{2}=0 \Rightarrow m=2$ doable root

$$
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

The general solution

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+2 x+\frac{9}{4}
$$

