October 2 Math 2306 sec. 53 Fall 2024

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order¹, linear, homogeneous equation with constant coefficients

$$
a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0, \text{ with } a\neq 0.
$$

If we put this in normal form, we get

$$
\frac{d^2y}{dx^2}=-\frac{b}{a}\frac{dy}{dx}-\frac{c}{a}y.
$$

Question: What sorts of functions *y* could be expected to satisfy

$$
y'' = (constant) y' + (constant) y?
$$
\n
$$
y = e^{x}
$$
\n
$$
y = 5 \cdot e^{(kx)} \quad \text{or} \quad (kx)
$$
\n
$$
y = e^{i(x)}
$$
\n
$$
y = 5 \cdot e^{(kx)} \quad \text{or} \quad (kx)
$$

¹We'll extend the result to higher order at the end of this section.

We look for solutions of the form $y = e^{rx}$ with *r* constant.

$$
ay'' + by' + cy = 0
$$
\n
$$
y = e^{rx}
$$
\n
$$
y' = re^{rx}
$$
\n
$$
y'' = re^{2}e^{rx}
$$
\n
$$
y''' = re^{2}e
$$

 $Lsell$ home solution (5) e^{rx} if r is a solution to the quadratic equation $ar^{2}+br+c=0$

Suppose *a*, *b*, and *c* are real numbers and $a \neq 0$. The function *y* = *e rx* solves the second order, homogeneous ODE

$$
ay'' + by' + cy = 0
$$

on (−∞, ∞) provided *r* is a solution of the quadratic equation

$$
ar^2+br+c=0.
$$

Characteristic (a.k.a. Auxiliary) Equation

The characteristic equation for the second order, linear, homogeneous ODE $ay'' + by' + cy = 0$ is the quadratic equation

$$
ar^2+br+c=0
$$

There are three cases that we must consider.

- I *b*² − 4*ac* > 0 then there are two distinct real roots $r_1 \neq r_2$
- II $b^2 4ac = 0$ then there is one repeated real root $r_1 = r_2 = r_1$
- III *b* ² − 4*ac* < 0 then there are two roots that are complex conjugates $r_{1,2} = \alpha \pm i\beta$ where α and β are real numbers and $\beta > 0$.

Case I: Two distinct real roots

$$
ay'' + by' + cy = 0
$$
, where $b^2 - 4ac > 0$.

There are two different roots r_1 and r_2 . A fundamental solution set consists of

$$
y_1 = e^{r_1 x}
$$
 and $y_2 = e^{r_2 x}$.

The general solution is

$$
y = c_1 e^{r_1 x} + c_2 e^{r_2 x}.
$$

Example

Find the general solution of the ODE.

$$
y'' - 2y' - 2y = 0
$$
\nThe $3D^c$ is $2^{n\frac{1}{2}}$ or $\frac{1}{2}$, $\frac{1}{2}$ in any n or $\frac{1}{2}$ in every n .

\nUsing $2^{n\frac{1}{2}}$ and $\frac{1}{2}$ and $\frac{1}{2}$.

\nExample 4: The $58^{10}C^2$.

\nExample 4: The $58^{10}C^2$.

\n
$$
C^2 - 2C + 1 = 2 + 1
$$

\n
$$
= 2 + 1
$$

\n
$$
= -1
$$

\n
$$
= 2 + 1
$$

$$
F-1 = \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F = 1 \pm \sqrt{3}
$$
\n
$$
\Rightarrow F =
$$

Case II: One repeated real root

$$
ay'' + by' + cy = 0
$$
, where $b^2 - 4ac = 0$

There is only one real, double root, $r = \frac{-b}{2a}$ $\frac{a}{2a}$.

Use reduction of order to find the second solution to the equation (in standard form)

 $y'' + \frac{b}{a}$ $\frac{b}{a}y' + \frac{c}{a}$ $\frac{c}{a}y = 0$ given one solution $y_1 = e^{-\frac{b}{2a}x}$ $P(x) = \frac{b}{a}$ = $\int P(x) dx = -\int \frac{b}{a} dx = -\frac{b}{a}$

$$
e^{-\int P(x) dx} = e^{-\frac{b}{2}x}
$$

\n
$$
e^{-\frac{b}{2}x} = e^{-\frac{b}{2}x}
$$

\n
$$
u = \int \frac{\frac{-b}{a}x}{e^{\frac{-b}{a}x}} dx = \int dx = x
$$

\n
$$
u = \int \frac{\frac{-b}{a}x}{e^{\frac{-b}{a}x}} dx = \int dx = x
$$

\n
$$
u = \int \frac{\frac{-b}{a}x}{e^{\frac{-b}{a}x}} dx = \int dx = x
$$

\n
$$
u = \int \frac{\frac{-b}{a}x}{e^{\frac{-b}{a}x}} dx = \int dx = x
$$

Case II: One repeated real root

$$
ay'' + by' + cy = 0
$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root *r*, then a fundamental solution set to the second order equation consists of

$$
y_1=e^{rx} \quad \text{and} \quad y_2=xe^{rx}.
$$

The general solution is

$$
y=c_1e^{rx}+c_2xe^{rx}.
$$

Example

Solve the IVP

 $y'' + 6y' + 9y = 0$, $y(0) = 4$, $y'(0) = 0$ The ODE is 2nd arder, linear, himsgineous w/ Constant coef. The Characteristic equits $\int_{0}^{2} + 6r + 9 = 0$ $\Rightarrow (r+3)^2 = 0 \Rightarrow r=-3$ $y_1 = e^{-3x}$, $y_2 = x e^{-3x}$ The general solution $y = c, e^{-3x} + c, xe^{3x}$ $AppI_2$ y (0) = 4 and y'(5) = 0.

$$
y' = -3c, e^{-3x} + c, e^{-3x} - 3c, x e^{-3x}
$$

$$
y(6) = c, e^{6} + c, e^{6} = 3c, (0)e^{6} = 0
$$

$$
y'(6) = -3c, e^{6} + c, e^{6} - 3c, (0)e^{6} = 0
$$

$$
-3c, + c, z = 0 \Rightarrow c, z = 3c, z = 12
$$

The solution to the $1\sqrt{\rho}$ is
 $y = 4e^{-3x} + 12x e^{-3x}$

Case III: Complex conjugate roots

$$
ay'' + by' + cy = 0
$$
, where $b^2 - 4ac < 0$

The two roots of the characteristic equation will be

$$
r_1 = \alpha + i\beta
$$
 and $r_2 = \alpha - i\beta$ where $i^2 = -1$.
8 z o

We want our solutions in the form of *real valued* functions. We start by writing a pair of solutions

$$
Y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} e^{i\beta x}
$$
, and $Y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} e^{-i\beta x}$.

We will use the **principle of superposition** to write solutions y_1 and *y*² that do not contain the complex number *i*.

Deriving the solutions Case III

 $\textsf{Recall Euler's Formula}^2: e^{i\theta} = \cos\theta + i\sin\theta.$

$$
Y_{1} = e^{\alpha x} e^{i\beta x} = e^{i\alpha x} (C_{01}(R_{x}) + i S_{11}(R_{x}))
$$
\n
$$
= e^{i\alpha x} C_{01}(R_{x}) + i e^{i\alpha x} S_{11}(R_{x})
$$
\n
$$
Y_{2} = e^{\alpha x} e^{-i\beta x} = e^{i\alpha x} (C_{01}(R_{x}) - i S_{11}(R_{x}))
$$
\n
$$
= e^{i\alpha x} C_{01}(R_{x}) - i e^{i\alpha x} S_{11}(R_{x})
$$
\n
$$
= e^{i\alpha x} C_{01}(R_{x}) - i e^{i\alpha x} S_{11}(R_{x})
$$
\n
$$
y_{1} = \frac{1}{2} (y_{1} + y_{2}) = \frac{1}{2} (2 e^{i\alpha x} C_{01}(R_{x})) = e^{i\alpha x} C_{02}(R_{x})
$$
\n
$$
y_{2} = \frac{1}{2} (y_{1} - y_{2}) = \frac{1}{2} (2 i e^{i\alpha x} S_{11}(R_{x})) = e^{i\alpha x} S_{11}(R_{x})
$$

 2 As the sine is an odd function $e^{-i\theta} = \cos\theta - i\sin\theta.$

 $y_{1} = e^{2x} C_{s3} (\beta x)$, $y_{2} = e^{2x} S_{in} (\beta x)$

Case III: Complex conjugate roots

$$
ay'' + by' + cy = 0
$$
, where $b^2 - 4ac < 0$

Let α be the real part of the complex roots and $\beta > 0$ be the imaginary part of the complex roots. Then a fundamental solution set is

$$
y_1 = e^{\alpha x} \cos(\beta x)
$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$
y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).
$$

Example

Find the general solution of $\frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0.$ The SDE is linear, homogeneous, with Constant coeffici ts. The Characteristic equation is $r^{2} + 4r + 6 = 0$ Using the gradiation formula $C = \frac{-4 \pm \sqrt{4^2 - 4(1)(6)}}{2(1)} =$ $-4 = 1 - 8$

= $-\frac{u \pm \sqrt{8}i}{2}$ = $-\frac{u \pm 2\sqrt{2}i}{2}$ = $-2\pm \sqrt{2}i$ Complex note w) $d=-2$ and $8=5$

 $x = e^{-2t} G(s(\sqrt{2}t), x = e^{-2t} S_{in}(\sqrt{2}t))$

The jeneral solution is
 $x = c_1 e^{2t} G_1(\sqrt{2}t) + c_2 e^{2t} S_m(\sqrt{2}t)$