October 30 Math 2306 sec. 51 Fall 2024
Section 12: LRC Series Circuits

Now that we have solution techniques for second order, linear
equations, we return our attention to linear circuits. We can track the
charge g on the capacitor, or the current j in an LRC circuit.
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Figure: Simple circuit with inductance L, resistance R, capacitance C, and
implied voltage E. The current i(t) = % where q is the charge on the
capacitor at time t in seconds.



Potential Drop Across Each Element
We will recall the voltage drop across each element in terms of charge
or current.
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Figure: The potential drop across the capacitor is g/C, across the resistor is
iR, and across the inductor is L%.



Kirchhoff’s Voltage Law

By Kirchhoff’s law, the sum of the potential drops across the pas-
sive elements equals the implied voltage. Mathematically, the
charge on the capacitor satisfies the second order, linear initial
value problem
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where qp and iy are the initial charge and current, respectively.
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If we take one time derivative, we can get an ODE for the current, i(?):

i _di 1.
Ldt2+Rdt+C/fE(t)



LRC Series Circuit (Free Electrical Vibrations)

Free Electrical Vibrations

If we consider the equation

2
99, g9

L ar? dt

overdamped if
critically damped if
underdamped if

1
€

the free electrical vibrations are called

=q=0,

—4L/C
—4L/C
—4L/C

>
<

o o

Note that this is the same condition we saw before. Overdamped = two real roots,
critically damped = one real root, underdamped = complex roots.



Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with
nonhomogeneous ODE for the charge q.
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From our basic theory of linear equations we know that the solution will take

the form
q(t) = qo(t) + go(1).

Transient State Charge

The function of qc is influenced by the initial state (qo and ip) and will
decay exponentially as t — co. Hence g is called the transient state

charge of the system. The transient state current in the circuit i; =
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Steady and Transient States
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q(t) = qe(t) + go(1)-

Steady State Charge

The function g, is independent of the initial state but depends on the
characteristics of the circuit (L, R, and C) and the applied voltage E.
g is called the steady state charge of the system. The steady state

current in the circuit j, = %,




Example

An LRC series circuit has inductance 0.5 h, resistance 10 ohms, and
capacitance 4 - 102 f. Find the steady state current of the system if the
applied force is E(t) = 5cos(10t).
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