October 30 Math 2306 sec. 51 Spring 2023

Section 13: The Laplace Transform

Definition:

Let $f(t)$ be piecewise continuous on $[0, \infty)$. The Laplace transform of f, denoted $\mathscr{L}\{f(t)\}$ is given by.

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t .=F(s)
$$

We will often use the upper case/lower case convention that $\mathscr{L}\{f(t)\}$ will be represented by $F(s)$. The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Remark: We're going to use the Laplace transform as a tool for solving IVPs where the initial conditions are given at $t=0$.

Example: $f(t)=e^{a t}, 0 \leq t<\infty$
Find the Laplace transform of f.
a is any red number

By definition

$$
\begin{aligned}
& \mathscr{L}\left\{e^{a t}\right\}=\int_{0}^{\infty} e^{-s t} e^{a t} d t \\
& =\int_{0}^{\infty} e^{(a-s) t} d t \\
& \text { assume } \\
& s \neq a \\
& =\left.\frac{1}{a-s} e^{(a-s) t}\right|_{0} ^{\infty} \\
& \text { assume } \\
& =\frac{1}{a-5}\left(0-e^{0}\right) \\
& =\frac{-1}{a-s}=\frac{1}{s-a} \\
& \begin{aligned}
e^{-s t} \cdot e^{a t} & =e^{-s t+a t} \\
& =e^{(-s+a) t} \\
& =e^{(a-s) t}
\end{aligned} \\
& \int e^{k t} d t=\frac{1}{k} e^{k t}+C \\
& \text { If } a-s>0 \text { the } \\
& \text { integral diving }
\end{aligned}
$$

What if $a-s=0 \quad \int_{0}^{\infty} 1 d t$ is divergent

So $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ if $s>a$

$$
a-s<0 \Rightarrow a<s
$$

Computing Laplace Transforms

Despite the definition, Laplace transforms are rarely evaulated by actually integrating. Transforms of common functions (and some not-so-common) are extensively cataloged. Tables of transforms are used in practice.

Remark: Googling table of Laplace transforms will yield thousands of free webpages and pdfs. The table l'll provide during exams is posted in D2L (and the course page, and the workbook).

Figure: Table of Laplace transforms t -shirt.

A Small Table of Laplace Transforms

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if
(a) $f(t)=\cos (\pi t)$ Use $\mathcal{L}(\cos (k t))$ w) $k=\pi$

$$
\mathscr{L}\{\operatorname{Cos}(\pi t)\}=\frac{S}{s^{2}+\pi^{2}}
$$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if
(b)

$$
\begin{aligned}
& f(t)=2 t^{4}-e^{-5 t}+3 \\
& \begin{aligned}
\mathscr{L}\left\{2 t^{4}-e^{-s t}+3\right\} & =2 \mathcal{L}\left\{t^{4}\right\}-\mathcal{L}\left\{e^{-5 t}\right\}+3 \mathcal{L}\{1\} \\
& =2\left(\frac{4!}{s^{5}}\right)-\frac{1}{s-(-5)}+3\left(\frac{1}{s}\right) \\
& =\frac{2(4!)}{s^{5}}-\frac{1}{s+5}+\frac{3}{s} \quad \text { for } s>0
\end{aligned} \\
& \mathcal{L}\{1\}=\frac{1}{s}, \mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s+1} \\
& \quad s>a
\end{aligned}
$$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if
(c)

$$
\begin{aligned}
f(t)=(2-t)^{2} & =4-4 t+t^{2} \\
\mathscr{L}\left\{(2-t)^{2}\right] & =\mathscr{L}\left[4-4 t+t^{2}\right\} \\
& =4 \mathscr{L}(1\}-4 \mathscr{L}\{t\}+\mathscr{L}\left\{t^{2}\right\} \\
& =4\left(\frac{1}{5}\right)-4\left(\frac{11}{s^{2}}\right)+\frac{2!}{s^{3}} \\
& =\frac{4}{s}-\frac{4}{s^{2}}+\frac{2}{s^{3}}
\end{aligned}
$$

Helpful Tip

If it's not immediately obvious how to evaluate $\mathscr{L}\{f(t)\}$, it's almost always helpful to consider the question

$$
\text { How would I evaluate } \quad \int f(t) d t ?
$$

The algebra and function identities used to evaluate integrals are usually helpful for evaluating Laplace tranforms.

Examples: Evaluate
How would you evaluate $\int \sin ^{2}(s t) d t$
(d) $\mathscr{L}\left\{\sin ^{2} 5 t\right\}$ use $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$

$$
\begin{aligned}
& =\mathcal{L}\left\{\frac{1}{2}-\frac{1}{2} \operatorname{Cos}(10 t)\right\} \\
& =\frac{1}{2} \mathcal{L}\{1\}-\frac{1}{2} \mathcal{L}[\cos (10 t)\} \\
& \quad=\frac{1}{2}\left(\frac{1}{s}\right)-\frac{1}{2} \frac{s}{s^{2}+10^{2}}=\frac{\frac{1}{2}}{s}-\frac{\frac{1}{2} s}{s^{2}+100}
\end{aligned}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Exponential Order

Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

Being of exponential order c means that f doesn't blow up at infinity any faster than $e^{c t}$.

Definition:Piecewise Continuous

A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem:

If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c \geq 0$, then f has a Laplace transform for $s>c$.

An example of a function that is NOT of exponential order for any c is $f(t)=e^{t^{2}}$. Note that

$$
f(t)=e^{t^{2}}=\left(e^{t}\right)^{t} \Longrightarrow|f(t)|>e^{c t} \quad \text { whenever } \quad t>c .
$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

Section 14: Inverse Laplace Transforms

We're going to use the Laplace transform to solve IVPs. So in addition to taking a transform to go from a function of t to a function of s, we'll want to go backwards.

Question: Given $F(s)$ can we find a function $f(t)$ such that

$$
\mathscr{L}\{f(t)\}=F(s) ?
$$

Inverse Laplace Transform

Let $F(s)$ be a function. An inverse Laplace transform of F is a piecewise continuous function $f(t)$ provided $\mathscr{L}\{f(t)\}=F(s)$. We will use the notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { if } \quad \mathscr{L}\{f(t)\}=F(s)
$$

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Using a Table

When using a table of Laplace transforms, the expression must match exactly. For example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

so

$$
\mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=t^{3}
$$

Note that $n=3$, so there must be 3 ! in the numerator and the power $4=3+1$ on s.

Remark: The function $F(s)$ often requires some amount of manimpulation to get it to look like a table entry. There are a few common tricks of the trade to taking inverse Laplace transforms.

Find the Inverse Laplace Transform

$$
\mathscr{L}\left\{t^{6}\right\}=\frac{6!}{s^{7}}
$$

(a) $\quad \mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$

Note that $\frac{1}{S^{7}}=\frac{1}{S^{7}} \frac{6!}{6!}=\frac{1}{6!} \frac{6!}{S^{7}}$

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^{7}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{6!} \frac{6!}{s^{7}}\right\}=\frac{1}{6!} \mathscr{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{6!} t^{6}
$$

Example: Evaluate
(b)

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\} & =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+3^{2}}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right)+\mathcal{L}^{-1}\left\{\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\} \\
& =\cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

Example: Evaluate
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$ Use partial fraction $\frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2}$ clear fractions

$$
s-8=A(s-2)+B s
$$

set $s=0 \quad 0-8=A(0-2)+B(0) \Rightarrow-8=-2 A \Rightarrow A=4$

$$
s=2 \quad 2-8=A(s-2)+B(2) \Rightarrow-6=2 B \Rightarrow \beta=-3
$$

$$
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}=\mathcal{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\}
$$

$$
\begin{aligned}
& =4 \mathcal{L}^{-1}\left[\frac{1}{s}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4-3 e^{2 t}
\end{aligned}
$$

