October 30 Math 2306 sec. 53 Fall 2024

Section 12: LRC Series Circuits

Now that we have solution techniques for second order, linear equations, we return our attention to linear circuits. We can track the charge q on the capacitor, or the current i in an LRC circuit.

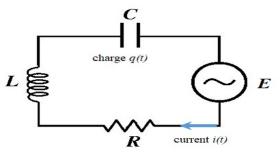


Figure: Simple circuit with inductance L, resistance R, capacitance C, and implied voltage E. The current $i(t) = \frac{dq}{dt}$ where q is the charge on the capacitor at time t in seconds.

Potential Drop Across Each Element

We will recall the voltage drop across each element in terms of charge or current.

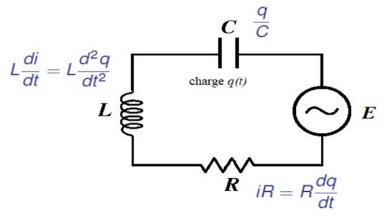


Figure: The potential drop across the capacitor is q/C, across the resistor is iR, and across the inductor is $L\frac{di}{dt}$.

Kirchhoff's Voltage Law

LRC Differential Equation

By Kirchhoff's law, the sum of the potential drops across the passive elements equals the implied voltage. Mathematically, the charge on the capacitor satisfies the second order, linear initial value problem

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E(t), \quad q(0) = q_0, \quad q'(0) = i_0$$

where q_0 and i_0 are the initial charge and current, respectively.

If we take one time derivative, we can get an ODE for the current, i(t):

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = E'(t)$$

LRC Series Circuit (Free Electrical Vibrations)

Free Electrical Vibrations

If we consider the equation

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0,$$

the free electrical vibrations are called

overdamped if
$$R^2 - 4L/C > 0$$
, critically damped if $R^2 - 4L/C = 0$, underdamped if $R^2 - 4L/C < 0$.

Note that this is the same condition we saw before. Overdamped = two real roots, critically damped = one real root, underdamped = complex roots.

Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with nonhomogeneous ODE for the charge q.

$$Lq'' + Rq' + \frac{1}{C}q = E(t), \quad q(0) = q_0, \quad q'(0) = i_0.$$

From our basic theory of linear equations we know that the solution will take the form

$$q(t) = q_c(t) + q_p(t).$$

Transient State Charge

The function of q_c is influenced by the initial state $(q_0 \text{ and } i_0)$ and will decay exponentially as $t \to \infty$. Hence q_c is called the **transient state charge** of the system. The **transient state current** in the circuit $i_c = \frac{dq_c}{dq_c}$

Steady and Transient States

$$Lq'' + Rq' + \frac{1}{C}q = E(t), \quad q(0) = q_0, \quad q'(0) = i_0.$$
 $q(t) = q_c(t) + q_p(t).$

Steady State Charge

The function q_p is independent of the initial state but depends on the characteristics of the circuit (L, R, and C) and the applied voltage E. q_p is called the **steady state charge** of the system. The **steady state current** in the circuit $i_p = \frac{dq_p}{dt}$.

Example

An LRC series circuit has inductance 0.5 h, resistance 10 ohms, and capacitance $4 \cdot 10^{-3}$ f. Find the steady state current of the system if the applied force is $E(t) = 5\cos(10t)$.

$$Lq'' + Rq' + \frac{1}{C}q = E(t)$$
Here, $L = \frac{1}{2} h$, $R = 10 s$,
$$C = 4.10^{-3} f$$

$$E(t) = 5 \cos(10t)$$
The GDE is $\frac{1}{2}q'' + 10q' + \frac{1}{4.10^{3}}q = 5 \cos(10t)$
we're asked for the sheady state current,
$$(p = \frac{dq_{P}}{dt}).$$

Well solve for
$$q_p$$
, then differentiate.

Find g_c . g_c solves $g_1'' + 20g_1' + 500g_1' = 0$.

The Characteristic equation is

 $r_1^2 + 20r + 500 = 0$
 $r_2^2 + 20r + 100 + 400 = 0$
 $r_1^2 + 20r + 100 + 400 = 0$
 $r_2^2 + 20r + 100 + 400 = 0$
 $r_1^2 + 20r + 100 + 400 = 0$

q" + zoq + souq = 10 cs (10+)

 $\frac{1}{4 \cdot 10^{-3}} = \frac{10^{3}}{4} = \frac{1000}{4} = 250$

In standard forms, the ODE is

$$r = -10 \pm 20i$$
 $q_1 = e^{-10t} \cos(20t)$, $q_2 = e^{-10t} \sin(20t)$
 $q'' + 20q' + 500q = 10 \cos(10t)$

For q_1 , well use M.U.C.

Set soo q_2 : $A \cos(10t) + B \sin(10t)$
 $q'' = -10A \sin(10t) + 10B \cos(10t)$

$$-200A + 400B = 0 \Rightarrow -A + 2B = 0 \Rightarrow A = 2B$$

$$40A + 20B = 1$$

$$40(2B) + 20B = 1 \Rightarrow 100B = 1 \Rightarrow B = \frac{1}{100}$$

$$A = \frac{2}{100}$$

400A + 200B = 10

The Steady state Charge
$$q_p = \frac{2}{100} Cor(10t) + \frac{1}{100} Sin(10t)$$

The steady State current,
$$i_p = \frac{dq_p}{dt}$$
, is $i_p = \frac{-2}{70} \operatorname{Sn}(10t) + \frac{1}{10} \operatorname{Cos}(10t)$

q" + zoq + souq = 10 cs (10+)

$$q''' + zoq'' + sooq' = -100 sin(10t)$$

We'd get the same particular solution for i.