October 31 Math 2306 sec. 52 Fall 2022

Section 15: Shift Theorems

Translation (Shift) in s.

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

We can state this in terms of the inverse transform. If $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\} .
$$

Translation (Shift) in t

Theorem: If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s)
$$

We can state this in terms of the inverse transform as

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) .
$$

We can also state this as

$$
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\} .
$$

Evaluate $\mathscr{L}\{f(t)\}$

$$
\begin{aligned}
f(t)= & \left\{\begin{array}{ll}
0, & 0 \leq t<4 \\
t e^{2 t}, & 4 \leq t
\end{array}=0-0 u(t-4)+t e^{2 t} u(t-u)\right. \\
= & t e^{2 t} u(t-u) \\
& \mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\} .
\end{aligned}
$$

Let $g(t)=t e^{2 t}$, we. need $g(t+4)$

$$
\begin{aligned}
& g(t+4)=(t+4) e^{2(t+4)}=t e^{2(t+4)}+4 e^{2(t+4)} \\
& =e^{8} t e^{2 t}+4 e^{8} e^{2 t}
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{L}\left\{t e^{2 t}\right\}= F(s-2) \text { where } F(s)=\mathscr{L}\{t\}=\frac{1}{s^{2}} \\
& \begin{aligned}
& \mathscr{L}\{g(t+4)\}=\mathcal{L}\left\{e^{8} t e^{2 t}+4 e^{8} e^{2 t}\right\} \\
&= e^{8} \mathscr{L}\left\{t e^{2 t}\right\}+4 e^{8} \mathscr{L}\left\{e^{2 t}\right\} \\
&= \frac{e^{8}}{(s-2)^{2}}+\frac{4 e^{8}}{s-2} \\
& f(t)=t e^{2 t} u(t-u) \\
& \mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\} .
\end{aligned} \\
&
\end{aligned}
$$

$$
\mathscr{L}\{f(t)\}=e^{-4 s}\left(\frac{e^{8}}{(s-2)^{2}}+\frac{4 e^{0}}{s-2}\right)
$$

Note $e^{-4 s} e^{8}=e^{-4 s+8}=e^{-4(s-2)}$

$$
\mathscr{L}\{f(t)\}=e^{-4(s-2)}\left(\frac{1}{(s-2)^{2}}+\frac{\varphi}{s-2}\right)
$$

Evaluate

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) .
$$

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s e^{-\frac{\pi}{4} s}}{s^{2}+6 s+10}\right\}=\mathcal{L}^{-1}\left\{e^{-\frac{\pi}{4} s} \frac{s}{s^{2}+6 s+10}\right\} \\
& F(s)=\frac{s}{s^{2}+6 s+10} \text { need } f(t)=\mathcal{L}^{-1}\{F(s)\} \\
& F(s)=\frac{s}{(s+3)^{2}+1}=\frac{s+3-3}{(s+3)^{2}+1}=\frac{s+3}{(s+3)^{2}+1}-\frac{3}{(s+3)^{2}+1} \\
& \mathscr{L}^{2}+6 s+9-9+10=(s+3)^{2}+1 \\
& F F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{s+3}{(s+3)^{2}+1}\right\}=e^{-3 t} \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}=e^{-3 t} \cos t \\
& \mathcal{L}^{-1}\left\{\frac{3}{(s+3)^{2}+1}\right\}=3 e^{-3 t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}=3 e^{-3 t} \sin t
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } f(t)=\mathscr{L}^{-1}\{F(s)\}=e^{-3 t} \cos t-3 e^{-3 t} \sin t \\
& \mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) . \\
& \mathscr{L}^{-1}\left\{\frac{s e^{-\frac{\pi}{4} s}}{s^{2}+6 s+10}\right\}=\mathcal{L}^{-1}\left\{e^{-\frac{\pi}{4} s} \frac{s}{s^{2}+6 s+10}\right\} \\
& =\left(e^{-3(t-\pi / 4)} \cos \left(t-\frac{\pi}{4}\right)-3 e^{-3(t-\pi / 4)} \sin (t-\pi / 4)\right) u(t-\pi / 4)
\end{aligned}
$$

