October 3 Math 2306 sec. 51 Fall 2022

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Basics of the Method

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

- Confirm the left is constant coefficient, and g is from the right class of functions.
- Find y_{c} first.
- The principle of superposition can be used if the right side is a sum of different kinds of g 's.
- Identify what type of function g is.
- Assume y_{p} is the same type.
- Compare assume y_{p} to y_{c} and modify (multiply by x^{n}) if needed.
- Remember that polynomials include all decending powers, and sines and cosines go together.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case I: The guess for $y_{p_{i}}$ DOES NOT have any like terms in common with y_{c}.

Then our guess for $y_{p_{i}}$ will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case II: The guess for $y_{p_{i}}$ DOES have a like term in common with y_{c}.
Then we multiply our guess at $y_{p_{i}}$ by x^{n} where n is the smallest positive integer such that our new guess $x^{n} y_{p_{i}}$ does not have any like terms in common with y_{c}. Then we take this new guess and substitute to find the A, B, etc.

Find the form of the particular solution

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find $y_{c}: y_{c}$ solves $y^{\prime \prime}-4 y^{\prime}+4 y=0$
Charactensstuc eq. $m^{2}-4 m+4=0$
Find roots: $(m-2)^{2}=0 \Rightarrow m=2 \underset{c}{\text { double }}$

$$
y_{1}=e^{2 x} \quad \text { and } y_{2}=x e^{2 x} \quad y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

Let's break this UP and let y_{p} solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x) \quad g_{1}(x)=\sin (4 x)
$$

and $y_{p 2}$ solve $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x} \quad g_{2}(x)=x e^{2 x}$

For $g^{\prime}(x)=\sin 4 x$,

$$
y_{p}=A \sin (4 x)+B \cos (4 x)
$$

This has no like terms in common with yo. It is correct

For $g_{2}(x)=x e^{2 x}$

$$
y_{p_{2}}^{x e^{x}}=(c x+D) e^{2 x} \text { not correct }
$$

$$
y_{1}=e^{2 x} \text { and } y_{2}=x e^{2 x}
$$

Has bim terms in common wI yo

$$
\begin{aligned}
y_{p_{2}} & =(C x+D) e^{2 x} \cdot x \\
& =\left(C x^{2}+D x\right) e^{2 x} \quad \text { stil vor carrect, } \\
y_{p_{2}} & =(C x+D) e^{2 x} \cdot x^{2} \\
& =\left(C x^{3}+D x^{2}\right) e^{2 x} \quad \text { This is correlt } \\
y_{p_{2}} & =C x^{3} e^{2 x}+D x^{2} e^{2 x} \quad
\end{aligned}
$$

The form of y_{p} is

$$
y_{p}=A \sin (4 x)+B \cos (4 x)+C x^{3} e^{2 x}+D x^{2} e^{2 x}
$$

Find the form of the particular solution

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}-4 x^{2}+1
$$

Find $y_{c}: \quad y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$
Characteristic eq: $\quad m^{3}-m^{2}+m-1=0$
factor. $\quad m^{2}(m-1)+(m-1)=0$

$$
\left(m^{2}+1\right)(m-1)=0
$$

$$
m-1=0 \Rightarrow m=1 \text { real root }
$$

$$
\begin{aligned}
& m-1=0 \Rightarrow m=1 \text { real complex } \\
& m^{2}+1=0 \Rightarrow m^{2}=-1 \Rightarrow m= \pm i \quad \alpha=0, \beta=1
\end{aligned}
$$

The solutions are

$$
\begin{gathered}
y_{1}=e^{x}, y_{2}=\cos x, y_{3}=\sin x \\
y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x \\
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}-4 x^{2}+1
\end{gathered}
$$

Let $g_{1}(x)=\cos x$ and $g_{2}(x)=x^{4}-4 x^{2}+1$ and look for $y_{p}=y_{p}+y_{p_{2}}$

$$
\text { For } \begin{aligned}
g_{1}(x) & =\cos x \\
y_{p_{1}} & =A \cos x+B \sin x \\
y_{p_{1}} & =(A \cos x+B \sin x) x
\end{aligned}
$$

$$
=A x \cos x+B x \sin x
$$

This cored

For $\quad g_{2}(x)=x^{4}-4 x^{2}+1$

$$
y_{\rho_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G
$$

This is the correct form.

$$
y_{p}=A x \cos x+B x \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G
$$

This is the form of the particular solution.

Solve the IVP

$$
y^{\prime \prime}-y=4 e^{-x} \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

Find $y c i \quad y^{\prime \prime}-y=0$
Characterists equ is $m^{2}-1=0 \Rightarrow m^{2}=1$

$$
\begin{aligned}
& m=1 \text { or } m=-1 \\
& y_{1}=e^{x} \text { and } y_{2}=e^{-x} \quad \text { (two red costs case) } \\
& y_{c}=c_{1} e^{x}+c_{2} e^{-x}
\end{aligned}
$$

Find $y p: \quad g(x)=4 e^{-x}$
$y_{p}=A x e^{-x}$ this is the correct form

$$
\begin{aligned}
& y_{p}=A x e^{-x} \\
& y_{p}^{\prime}=A e^{-x}-A x e^{-x} \\
& y_{p}^{\prime \prime}=-A e^{-x}-A e^{-x}+A x e^{-x}
\end{aligned}
$$

subs into the CDE

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}=4 e^{-x} \\
-2 A e^{-x}+A x e^{-x}-A x e^{-x}=4 e^{-x}
\end{gathered}
$$

Collect lin terms

$$
\begin{aligned}
& \text { at lin terns } \\
& x e^{-x}(A-A)+e^{-x}(-2 A)=4 e^{-x} \\
&-2 A=4 \Rightarrow A=-2
\end{aligned}
$$

So $y_{p}=-2 x e^{-x}$

The general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}
$$

Apply, the I.C. $y(0)=-1, y^{\prime}(0)=1$

$$
\begin{aligned}
& y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}-2 e^{-x}+2 x e^{-x} \\
& y(0)=c_{1} e^{0}+c_{2} e^{0}-2(0) e^{0}=-1 \Rightarrow c_{1}+c_{2}=-1 \\
& y^{\prime}(0)=c_{1} e^{0}-c_{2} e^{0}-2 e^{0}+2 \cdot 0 e^{0}=1 \Rightarrow c_{1}-c_{2}=3 \\
& c_{1}+c_{2}=-1 \\
& c_{1}-c_{2}=3 \\
& \text { add } \quad \frac{2 c_{1}=2}{} \Rightarrow c_{1}=1
\end{aligned}
$$

$$
c_{2}=-1-c_{1}=-1-1=-2
$$

The solution to the IVP is

$$
y=e^{x}-2 e^{-x}-2 x e^{-x}
$$

