October 4 Math 2306 sec. 51 Fall 2021

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

Figure: We track the displacement x from the equilibrium position. Recall δx is the displacement in equilibrium. We assume there are no damping nor external forces (for now).

Simple Harmonic Motion

We derive the equation for displacement. Given initial displacement x_{0} and initial velocity x_{1},

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1} \tag{1}
\end{equation*}
$$

where $\omega^{2}=\frac{k}{m}=\frac{g}{\delta x}$. The solution is

$$
\begin{equation*}
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t) \tag{2}
\end{equation*}
$$

called the equation of motion ${ }^{1}$.
k-spring constant, m-object's mass, g-acceleration due to gravity.
${ }^{1}$ Caution: The phrase equation of motion is used differently by different authors. Some use this phrase to refer the IVP (1). Others use it to refer to the solution to the IVP such as (2).

Simple Harmonic Motion

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}=\frac{\omega}{2 \pi}^{2}$
- the circular (or angular) frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{2}$ Various authors call f the natural frequency and others use this term for ω. $\overline{\bar{z}}$

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \sin (\omega t+\phi)
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and the phase shift ϕ must be defined by

$$
\sin \phi=\frac{x_{0}}{A}, \quad \text { with } \quad \cos \phi=\frac{x_{1}}{\omega A} .
$$

Amplitude and Phase Shift (alternative definition)

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \cos (\omega t-\hat{\phi})
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and this phase shift $\hat{\phi}$ must be defined by

$$
\cos \hat{\phi}=\frac{x_{0}}{A}, \quad \text { with } \quad \sin \hat{\phi}=\frac{x_{1}}{\omega A} .
$$

Example
An object stretches a spring 6 inches in equilibrium. Assuming no driving force and no damping, set up the differential equation describing this system.

No driving + no damping \Rightarrow
simple harmonic motion.

The ODE is

$$
\begin{aligned}
& x^{\prime \prime}+\omega^{2} x=0 \\
& \text { or } m x^{\prime \prime}+k x=0 \quad \omega^{2}=\frac{k}{m}
\end{aligned}
$$

we need to find ω^{2}.
we hove displacement in equilibrium

$$
\delta x=6 \mathrm{in}
$$

we have $\omega^{2}=\frac{\partial}{\delta x}$
$g=32 \mathrm{ft} / \mathrm{sec}^{2}$. We con convent
δx to feet

$$
\begin{aligned}
& \delta x=6 \text { in }\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)=\frac{1}{2} \mathrm{ft} \\
& \omega^{2}=\frac{g}{\delta x}=\frac{32 \mathrm{ft} / \mathrm{sec}^{2}}{\frac{1}{2} \mathrm{ft}}=64 \frac{1}{\sec ^{2}}
\end{aligned}
$$

The oDe is

$$
x^{\prime \prime}+64 x=0
$$

Example
A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet above equilibrium with an initial downward velocity of $24 \mathrm{ft} / \mathrm{sec}$. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)

The oDE will be $x^{\prime \prime}+\omega^{2} x=0$

$$
\text { Note: } \delta x=6^{\text {in }} \text { so } \omega^{2}=64 \frac{1}{\mathrm{sec}^{2}}
$$

Given the weight, we can find m and
k. The weight of the object

$$
w=4 \mathrm{lb}
$$

The mass $m=\frac{w}{g}=\frac{416}{32 \mathrm{ft} / \mathrm{sec}^{2}}=\frac{1}{8}$ slugs.
The spring constant $k=\frac{\omega}{\delta x}=\frac{4 \mathrm{lb}}{\frac{1}{2} \mathrm{ft}}=8 \frac{\mathrm{lb}}{\mathrm{ft}}$

So again $\omega^{2}=\frac{k}{m}=\frac{8 \frac{16}{d t}}{\frac{1}{8} \operatorname{sing} s}=64 \frac{1}{\sec ^{2}}$

The IVP is

$$
x^{\prime \prime}+64 x=0 \quad x(0)=4 \quad x^{\prime}(0)=-24
$$

Find the general solution to the ODE,
Let's use r for the charaderistic plynonid.

$$
\begin{gathered}
r^{2}+64=0 \\
r^{2}=-64 \Rightarrow r= \pm 8 i=0 \pm 8 i \\
x_{1}=e^{0 t} \cos (8 t), x_{2}=e^{0 t} \sin (8 t) \\
x(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t)
\end{gathered}
$$

Append $x(0)=4, \quad x^{\prime}(0)=24$

$$
x^{\prime}(t)=-8 c_{1} \cdot \sin (8 t)+8 c_{2} \cos (8 t)
$$

October 4, $2021 \quad 11 / 28$

$$
\begin{aligned}
x(0) & =c_{1} \cos (0)+c_{2} \sin (0)=4 \Rightarrow c_{1}=4 \\
\vdots & =4 \\
x^{\prime}(0) & =-8 c_{1} \sin (0)+8 c_{2} \cos (0)=-24 \\
& 8 c_{2}=-24 \Rightarrow c_{2}=-3
\end{aligned}
$$

The equation of motion is

$$
x(t)=4 \cos (8 t)-3 \sin (8 t)
$$

The period $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{8}=\frac{\pi}{4}$
The frequency $f=\frac{1}{T}=\frac{4}{\pi}$

The amplitude

$$
\begin{aligned}
A & =\sqrt{4^{2}+(-3)^{2}}=5 \\
\text { If } \quad x(t) & =A \sin (\omega t+\phi) \\
& =5 \sin (8 t+\phi)
\end{aligned}
$$

where

$$
\phi=\cos ^{-1}\left(\frac{-3}{5}\right) \approx 2.21 \quad \phi \approx 127^{\circ}
$$

The range for $\sin ^{-1} q$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

The rang for $\operatorname{Cos}^{\prime \prime} q$ is $[0, \pi]$.

Free Damped Motion

Figure: If a damping force is added, we'll assume that this force is proportional to the instantaneous velocity.

Free Damped Motion

Now we wish to consider an added force corresponding to damping-friction, a dashpot, air resistance.

Total Force $=$ Force of spring + Force of damping

$$
m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x \quad \Longrightarrow \quad \frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0
$$

where

$$
2 \lambda=\frac{\beta}{m} \quad \text { and } \quad \omega=\sqrt{\frac{k}{m}} .
$$

Three qualitatively different solutions can occur depending on the nature of the roots of the characteristic equation

$$
r^{2}+2 \lambda r+\omega^{2}=0 \quad \text { with roots } \quad r_{1,2}=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}
$$

Case 1: $\lambda^{2}>\omega^{2}$ Overdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} e^{t \sqrt{\lambda^{2}-\omega^{2}}}+c_{2} e^{-t \sqrt{\lambda^{2}-\omega^{2}}}\right)
$$

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may be slow.

Case 2: $\lambda^{2}=\omega^{2}$ Critically Damped

$$
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

Figure: One real root. No oscillations. Fastest approach to equilibrium.

Case 3: $\lambda^{2}<\omega^{2}$ Underdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} \cos \left(\omega_{1} t\right)+c_{2} \sin \left(\omega_{1} t\right)\right), \quad \omega_{1}=\sqrt{\omega^{2}-\lambda^{2}}
$$

Figure: Complex conjugate roots. Oscillations occur as the system approaches (resting) equilibrium.

Comparison of Damping

Figure: Comparison of motion for the three damping types.

