October 4 Math 2306 sec. 51 Fall 2024

Section 8: Homogeneous Equations with Constant Coefficients

We are considering linear, homogeneous equations with constant coefficients.

Second Order Case

Suppose *a*, *b*, and *c* are real numbers and $a \neq 0$. The function $y = e^{rx}$ solves the second order, homogeneous ODE

$$ay''+by'+cy=0$$

on $(-\infty,\infty)$ provided *r* is a solution of the quadratic equation

$$ar^2+br+c=0.$$

This polynomial equation is called the characteristic equation.

Second Order Cases ay'' + by' + cy = 0

Two Distinct Real Roots

If $ar^2 + br + c = 0$ has two different real roots, r_1 and r_2 , then $y_1 = e^{r_1 x}$ and $y_2 = e^{r_2 x}$ form a fundamental solution set. The general solution is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}.$$

One Repeated Real Root

If $ar^2 + br + c = 0$ has one repeated real root, *r*, then $y_1 = e^{rx}$ and $y_2 = xe^{rx}$ form a fundamental solution set. The general solution is

$$y=c_1e^{rx}+c_2xe^{rx}.$$

Second Order Cases ay'' + by' + cy = 0

Complex Conjugate Roots

If $ar^2 + br + c = 0$ complex roots $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, with α and β real numbers and $\beta > 0$, then

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$

form a fundamental solution set. The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).$$

Solve the initial value problem

4v'' + 4v' + v = 0, v(0) = 1, v'(0) = -1The ODE is linear, 2nd order, honogeneous of constant wet. The characteristic equ is $(2(+1)^2 = 0 \implies \Gamma = \frac{-1}{2} \qquad \text{for } n \in \mathbb{R}^{2}$ $4c^{2} + 4c + 1 = 0$ y,= e , yz = x e The general solution to the ODE

$$y = c_{1} e^{\frac{1}{2}x} + c_{2} x e^{\frac{1}{2}x}$$

$$A \rho e^{1/2} y(0) = 1 \quad a = y^{1}(0) = -1.$$

$$y' = -\frac{1}{2} c_{1} e^{-\frac{1}{2}x} + c_{2} e^{-\frac{1}{2}x} - \frac{1}{2} c_{2} x e^{\frac{1}{2}x}$$

$$y(0) = c_{1} e^{1/2} + c_{2}(0) e^{0} = 1 \quad =) \quad c_{1} = 1.$$

$$y'(0) = -\frac{1}{2} c_{1} e^{0} + c_{2} e^{0} - \frac{1}{2} c_{2}(0) e^{0} = -1.$$

$$\frac{1}{2} c_{1} + c_{2} e^{0} - \frac{1}{2} c_{2}(0) e^{0} = -1.$$

$$\frac{1}{2} c_{1} + c_{2} e^{0} - \frac{1}{2} c_{2}(0) e^{0} = -1.$$

$$\frac{1}{2} c_{1} + c_{2} e^{0} - \frac{1}{2} c_{2}(0) e^{0} = -1.$$

$$\frac{1}{2} c_{1} + c_{2} e^{0} - \frac{1}{2} c_{2}(0) e^{0} = -1.$$

$$\frac{1}{2} c_{2} + c_{1} = -1.$$

$$c_{2} = -\frac{1}{2}$$

The solution to the UVP is

$$y:e^{\frac{1}{2}x} - \frac{1}{2}xe^{\frac{1}{2}x}$$

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, r may be a root of multiplicity k where $1 \le k \le n$.
- If a real root r is repeated k times, we get k linearly independent solutions

$$e^{rx}$$
, xe^{rx} , x^2e^{rx} , ..., $x^{k-1}e^{rx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x), \dots,$$

 $x^{k-1}e^{\alpha x}\cos(\beta x), x^{k-1}e^{\alpha x}\sin(\beta x)$

Find the general solution of the ODE.

$$y'''-3y''+3y'-y = 0$$
The ODE is 3'd order, linear, honogeneous,
which constant coef. The Characteristic
equation is

$$(^{3}-3c^{2}+3c-1=0)$$

$$(c-1)^{3}=0 \implies c-1$$

Solution an

$$y_1 = e^{1X}, y_2 = xe^{1X}, y_3 = x^2 e^{1X}$$

The general solution is $y = c_1 e^{x} + c_2 x e^{x} + c_3 x^2 e^{x}$

Find the general solution of the ODE.

 $v^{(4)}+3v''-4v=0$ The Opi is linear, himogeneous, w constant coef. The Characteristic equation is $\Gamma^{4} + 3\Gamma^{2} - 4 = 0$ $(r^{2} + y)(r^{2} - 1) = 0$ $(r^{2}+Y)(r-1)(r+1) = 0$ ⇒ r=1, r=-1 r=+4=0 = r=+4=) r=±2i

atip=tzi = q=0 p=2 $y_1: e^{1\times}, y_2: e^{-1\times},$ $y_3 = e^{ox} C_s(z_X)$, $y_4 = e^{ox} S_{in}(z_X)$ = $S_{in}(z_X)$ = Cos(2x)seneral solution $y = C_1 e^{x} + C_2 e^{-x} + C_3 C_{05}(2x) + C_4 S_{10}(2x)$

Consider the ODE

$$y^{(6)} - 6y^{(4)} + 104y''' + 9y'' - 312y' + 2704y = 0.$$

The characteristic equation is

$$r^6 - 6r^4 + 104r^3 + 9r^2 - 312r + 2704 = 0$$

which factors as

$$((r-2)^2+9)^2(r+4)^2=0.$$

Find the general solution.

Find the nots. $(r+q)^2 = 0 \implies r+q = 0 \implies r = -q \qquad portole$ $y_1 = e^{-qx}$, $y_2 = x e^{-qx}$

$$((r-2)^{2}+9)^{2}(r+4)^{2} = 0$$

$$((r-2)^{2}+9)^{2}=0 \Rightarrow (r-2)^{2}+9=0$$

$$(r-2)^{2}=-9$$

$$(r-2)^{2$$

 $y_s = \chi e^{z_x} C_s(3x)$, $y_6 = \chi e^{z_x} S_{s,n}(3x)$.

The general solution $y = e^{4x} \left(c_{1+} c_{2x} \right) + e^{2x} c_{3x} \left(c_{3+} c_{5x} \right)$ + e^{z_X} Sin (3x) (Cy + C6x)