## October 4 Math 2306 sec. 51 Spring 2023

## Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where $g$ comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

The general solution, $y=y_{c}+y_{p}$ will require both $y_{c}$ and $y_{p}$. The associated homogeneous equation will be constant coefficient, so we use the method of the last section to find $y_{c}$.

## Motivating Example

Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

We found the particular solution

$$
y_{p}=2 x+\frac{9}{4}
$$

by

- guessing that $y_{p}$ is the same kind of function as $g$,
- setting it up with undetermined coefficients, $y_{p}=A x+B$, and
- substituting it into the ODE to find the coefficients, $A$ and $B$, that work.
The complementary solution solves $y^{\prime \prime}-4 y^{\prime}+4 y=0$. Using the characteristic equation, that turns out to be $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}$. Making the general solution

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+2 x+\frac{9}{4}
$$

The Method: Assume $y_{p}$ has the same form as $g(x)$
Find a particular solution to $y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}$
The left is constant coed and the right is an exponential.

$$
g(x)=6 e^{-3 x} \quad\left(a \text { constant times } e^{-3 x}\right)
$$

Set $y_{p}=A e^{-3 x} \quad$ for some constant $A$.
substitute into the $O D \bar{E}$.

$$
\begin{gathered}
y_{p}=A e^{-3 x}, y_{p}^{\prime}=-3 A e^{-3 x}, y_{p}^{\prime \prime}=9 A e^{-3 x} \\
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{-3 x}
\end{gathered}
$$

$$
\begin{array}{r}
9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4\left(A e^{-3 x}\right)=6 e^{-3 x} \\
25 A e^{-3 x}=6 e^{-3 x}
\end{array}
$$

These match if $25 A=6 \Rightarrow A=\frac{6}{25}$

We found a particular solution

$$
y_{p}=\frac{6}{25} e^{-3 x}
$$

Check: $y_{p}=\frac{6}{25} e^{-3 x}, y_{p}{ }^{\prime}=\frac{-18}{25} e^{-3 x}, y_{p}{ }^{\prime \prime}=\frac{54}{25} e^{-3 y}$

$$
\begin{aligned}
& =\frac{6}{25} e^{-3 x}, y_{p}^{\prime}=\frac{10}{25} e^{\prime}, y_{p} \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=\frac{54}{25} e^{-3 x}-4\left(\frac{-18}{25} e^{-3 x}\right)+4\left(\frac{6}{25} e^{-3 x}\right)=6 e^{-3 x}
\end{aligned}
$$

$$
\frac{54}{25}+\frac{72}{25}+\frac{24}{25}=\frac{150}{25}=6
$$

The Initial Guess Must Be General in Form

Find a particular solution to $y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}$ The left sike is constant coef and the right is a polsnanial.

$$
g(x)=16 x^{2}
$$

$g$ is a nonomid, a constant tines $x^{2}$ $g$ is also a $2^{\text {nd }}$ degree polynomial

Suppose we consider $g(x)$ as a monomid and assume $y_{p}$ is a constant times $x^{2}$.

Set $y_{p}=A x^{2}$. Substitute

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

$$
\begin{gathered}
y p^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2} \\
4 A x^{2}-8 A x+2 A=16 x^{2}
\end{gathered}
$$

Matching lie terms

$$
\left.\begin{array}{lll}
4 A x^{2}=16 x^{2} & \Rightarrow & 4 A=16 \\
-8 A x=0 & \Rightarrow & -8 A=0 \\
2 A=0 & \Rightarrow & 2 A=0
\end{array}\right\} \Rightarrow \begin{gathered}
A=4 \text { ard } \\
A=0 \\
\text { impossible! }
\end{gathered}
$$

The process breaks down sine the form for yep is wrong.
let's recognize $g(x)=16 x^{2}$ as a $2^{n d}$ degree polynomid. Assume $y p$ is also a $z^{\text {nd }}$ degree poly.

Set $y_{p}=A x^{2}+B x+C$. Substitute

$$
\begin{gathered}
y_{p}^{\prime}=2 A x+B \\
y_{p}^{\prime \prime}=2 A \\
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
\end{gathered}
$$

match like terms

| $x^{2}$ | $4 A$ | $=16$ |
| :--- | :--- | :--- |
| $x$ | $-8 A+4 B$ | $=0$ |
| constr | $2 A-4 B+4 C=0$ |  |

Top eqn. $A=4$
middle

$$
4 B=8 A \Rightarrow B=2 A=8
$$

last eqn $\quad 4 C=-2 A+48 \Rightarrow C=-\frac{1}{2} A+B=-\frac{1}{2}(4)+8=6$

$$
A=4, B=8, C=6
$$

The particular solution

$$
y_{p}=4 x^{2}+8 x+6
$$

The general. solution to the ODE is

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+4 x^{2}+8 x+6
$$

## General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If we assume that $y_{p}=A \sin (2 x)$, taking two derivatives would lead to the equation

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
$$

This would require (matching coefficients of sines and cosines)

$$
-4 A=20 \text { and }-2 A=0
$$

That is, $A=-5$ and $A=0$.
This is impossible as it would require $-5=0$. We failed to account for the cosine.

## General Form: sines and cosines

We must think of our equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$ as

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

The correct format for $y_{p}$ is

$$
y_{p}=A \sin (2 x)+B \cos (2 x)
$$

## Two Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.

Remark: The key point is that we have to account for ALL of the terms that might arise from taking derivatives.

## Examples of Forms of $y_{p}$ based on $g$ (Trial Guesses)

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

(a) $g(x)=1 \quad$ (or really any nonzero constant)

$$
y_{p}=A
$$

(b) $g(x)=x-7 \quad$ ( $1^{\text {st }}$ degree polynomial)

$$
y_{p}=A x+B
$$

## Examples of Forms of $y_{p}$ based on $g$ (Trial Guesses)

(c) $g(x)=5 x^{2} \quad\left(2^{n d}\right.$ degree polynomial)

$$
y_{p}=A x^{2}+B x+C
$$

(d) $g(x)=3 x^{3}-5 \quad\left(3^{r d}\right.$ degree polynomial)

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

Examples of Forms of $y_{p}$ based on $g$ (Trial Guesses)
(e) $g(x)=x e^{3 x} \quad\left(1^{s t}\right.$ degree polynomial times $\left.e^{3 x}\right)$

$$
y_{p}=(A x+B) e^{3 x}=A x e^{3 x}+B e^{3 x}
$$

(f) $g(x)=\cos (7 x) \quad$ (linear combo of cosine and sine of $7 x$ )

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

Examples of Forms of $y_{p}$ based on $g$ (Trial Guesses)
(g) $g(x)=\sin (2 x)-\cos (4 x) \quad$ (two linear combos of sine/cosine)

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x) \quad$ (linear combo $2^{\text {nd }}$ degree polynomial time sine and $2^{\text {nd }}$ degree poly times cosine)

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

