October 4 Math 2306 sec. 51 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

The general solution, $y = y_c + y_p$ will require both y_c and y_p . The associated homogeneous equation will be constant coefficient, so we use the method of the last section to find y_c .

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

We found the particular solution

$$y_p = 2x + \frac{9}{4}$$

by

- guessing that y_p is the same kind of function as g,
- setting it up with **undetermined** coefficients, $y_p = Ax + B$, and
- substituting it into the ODE to find the coefficients, A and B, that work.

The complementary solution solves y'' - 4y' + 4y = 0. Using the characteristic equation, that turns out to be $y_c = c_1 e^{2x} + c_2 x e^{2x}$. Making the general solution

$$y = c_1 e^{2x} + c_2 x e^{2x} + 2x + \frac{9}{4}$$

The Method: Assume y_p has the same **form** as g(x)

Find a particular solution to $y'' - 4y' + 4y = 6e^{-3x}$ The left is constant colf and the right is an exponential. 3(x)= 6 e (a constant times e) Set yp= Ae for some constant A. substitute into the ODE. $y_{P} = A e^{3x}$, $y_{P}' = -3A e^{-3x}$, $y_{P}'' = 9A e^{-3x}$ yp" - 4yp + 4yp = 6 = 3x

October 2, 2023 4/36

・ロト ・聞 ト ・ヨト ・ヨト 三臣

The Initial Guess Must Be General in Form

Find a particular solution to $y'' - 4y' + 4y = 16x^2$ The left side is constant coef and the right is a polynomial. g(x) = 16 x2 g is a monomial, a constant times X2 g is also a 2nd degree polynomial Suppose we consider g(x) as a monomial and assume yp is a constant times x2. Set yp= Ax2 Substitute yp'= ZAX yp" = 2A

October 2, 2023 5/36

$$yp'' - 4yp' + 4yp = 16 x^2$$

 $\partial A - 4(2Ax) + 4(Ax^2) = 16x^2$
 $4Ax^2 - 8Ax + 2A = 16x^2$

Matching like terms

$$4Ax^2 = 16x^2 \Rightarrow 4A = 16$$

 $-8Ax = 0 \Rightarrow -8A = 0$
 $2A = 0 \Rightarrow 2A = 0$
impossible!

The process breaks down since the form for
yp is wrong.
Let's recognize
$$g(x) = 16x^2$$
 as a 2^{hd} degree poly.
Polynomial. Assume yp is also a 2^{hd} degree poly.

October 2, 2023 6/36

Set
$$y_p = Ax^2 + Bx + C$$
, $s_n + b + h + e$
 $y_p' = 2Ax + B$
 $y_p'' = 2A$
 $y_p'' - y_p' + y_p = 16x^2$
 $2A - y(2Ax + B) + y(Ax^2 + Bx + C) = 16x^2$
 $y_A x^2 + (-BA + y_B)x + (2A - y_B + y_C) = 16x^2 + Ox + O$
Match like terms
 x^2 y_A = 16
 x - BA + y_B = O
 $anst$ $aA - y_B + y_C = O$

୬ବଙ

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣

A= 4, B= 8, C= 6
The particular solution

$$y_p = 4x^2 + 8x + 6$$

The general solution to the GDF is

October 2, 2023 8/36

YAD A B A E A E A E DOC

General Form: sines and cosines

$$y''-y'=20\sin(2x)$$

If we assume that $y_p = A\sin(2x)$, taking two derivatives would lead to the equation

$$-4A\sin(2x) - 2A\cos(2x) = 20\sin(2x).$$

This would require (matching coefficients of sines and cosines)

-4A = 20 and -2A = 0.

October 2, 2023

10/36

That is, A = -5 and A = 0.

This is impossible as it would require -5 = 0. We failed to account for the cosine.

General Form: sines and cosines

We must think of our equation $y'' - y' = 20 \sin(2x)$ as

$$y'' - y' = 20\sin(2x) + 0\cos(2x).$$

The correct format for y_p is

$$y_{\rho} = A\sin(2x) + B\cos(2x).$$

Two Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.

Remark: The key point is that we have to account for **ALL** of the terms that might arise from taking derivatives.

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g(x)$$

(a) g(x) = 1 (or really any nonzero constant)

yp= A

(b) g(x) = x - 7 (1st degree polynomial)

yp=Ax+B

October 2, 2023 12/36

(c) $g(x) = 5x^2$ (2^{*nd*} degree polynomial)

$$y_p = Ax^2 + Bx + C$$

(d) $g(x) = 3x^3 - 5$ (3rd degree polynomial)

$$y_{p=} A_{x}^{3} + B_{x}^{2} + C_{x} + D$$

< □ → < □ → < 直 → < 亘 → < 亘 → ○ へ (?) October 2, 2023 13/36

(e) $g(x) = xe^{3x}$ (1st degree polynomial times e^{3x})

$$y_p = (Ax+B)e^{3x} = Axe^{3x} + Be^{3x}$$

(f) $g(x) = \cos(7x)$ (linear combo of cosine and sine of 7x)

< □ → < □ → < 三 → < 三 → 三 の へ (?) October 2, 2023 14/36

(g) $g(x) = \sin(2x) - \cos(4x)$ (two linear combos of sine/cosine)

yp=ASm(2x)+B Cos(2x) + C Sm(4x) + D Cos(4x)

(h) $g(x) = x^2 \sin(3x)$ (linear combo 2^{nd} degree polynomial time sine and 2^{nd} degree poly times cosine)

October 2, 2023 15/36