October 5 Math 2306 sec. 52 Fall 2022

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$y'' + y = \tan x$$
, or $x^2y'' + xy' - 4y = e^x$.

The method of undetermined coefficients is not applicable to either of these.

- The first equation has constant coefficient left side, but the tangent is not the right kind of right hand side.
- The second equation has an exponential right side, but the left side isn't constant coefficient.

We need another approach.

October 3, 2022

1/16

Variation of Parameters

For the equation in standard form

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = g(x),$$

suppose $\{y_1(x), y_2(x)\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$y_{\rho}(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

where u_1 and u_2 are functions we will determine (in terms of y_1 , y_2 and g). Recall $y_c = c_1 y_1 (x) + c_2 y_2 (x)$

This method is called variation of parameters.

Variation of Parameters: Derivation of y_p

$$y'' + P(x)y' + Q(x)y = g(x)$$

Set
$$y_{p} = u_{1}(x)y_{1}(x) + u_{2}(x)y_{2}(x)$$

 $y_{p} = u_{1}(y_{1})y_{1}(x) + u_{2}(y_{2})y_{2}(x)$
 $y_{p} = u_{1}(y_{1})y_{1} + u_{2}(y_{2})y_{2} + u_{1}(y_{1})y_{1} + u_{2}(y_{2})y_{2}$
Assume $u_{1}(y_{1})y_{1} + u_{2}(y_{2})y_{2} = 0$

Remember that $y''_i + P(x)y'_i + Q(x)y_i = 0$, for i = 1, 2

October 3, 2022 3/16

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(

be have the system

$$y_{1}u_{1}' + y_{2}u_{2}' = 0$$

 $y_{1}'u_{1}' + y_{2}'u_{2}' = 9$

Lits use Cromer's rule.

$$\begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} \begin{bmatrix} u_1' \\ u_2' \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

 $W = y_1 y_2 - y_1 y_2$

October 3, 2022 5/16

э

イロト イロト イヨト イヨト

Let W be the Wronshian. $W_1 = det \begin{pmatrix} 0 & y_2 \\ g & y_2' \end{pmatrix} = -g y_2$ $W_z = d + \begin{pmatrix} y_1 & 0 \\ y_1' & 2 \end{pmatrix} = y_1 g$ \Rightarrow $u_1 = \int \frac{-3v_2}{w} dx$ $u_1' = \frac{W_1}{W_1} = -\frac{3y_2}{W}$ = $u_z = \int \frac{3Y_i}{w} dx$ $u_2 = \frac{W_2}{W} = \frac{391}{W}$

> < □ > < @ > < E > < E > E の Q @ October 3, 2022 6/16

Variation of Parameters

$$y'' + P(x)y' + Q(x)y = g(x)$$

If $\{y_1, y_2\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

 $V = V_c + V_p$

where

 $y_c = c_1 y_1(x) + c_2 y_2(x)$, and $y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$.

Letting W denote the Wronskian of y_1 and y_2 , the functions u_1 and u_2 are given by the formulas

$$u_1 = \int \frac{-y_2g}{W} dx$$
, and $u_2 = \int \frac{y_1g}{W} dx$.

イロト 不得 トイヨト イヨト ヨー ろくの October 3, 2022

9/16

Solve the IVP

 $x^2y'' + xy' - 4y = 8x^2$, y(1) = 0, y'(1) = 0The complementary solution of the ODE is $y_c = c_1x^2 + c_2x^{-2}$.

Find yp: Get ODE in standard form $y'' + \frac{1}{x}y' - \frac{y}{x}y = 8 \Rightarrow 9(x) = 8$ Sut yp= U, y, + Uz yz $y_1 = \chi^2$ $y_2 = \chi^{-2}$, $g(\chi) = 8$ $|\chi| = \left| \begin{array}{c} \chi^2 & \chi^2 \\ \chi_{\chi} & -2\chi^2 \end{array} \right| = \chi^2 \left(-2\chi^{-3} \right) - 2\chi \left(\chi^{-2} \right) = -4\chi^{-1} |\chi|^2$ October 3, 2022 10/16

$$u_{1} = \int -\frac{9}{2} \frac{y_{2}}{w} dx = \int \frac{-8x^{2}}{-4x^{2}} dx = 2 \int \frac{x}{x^{2}} dx$$

$$= a \int \frac{1}{X} dx = 2 \ln |X|$$

$$\begin{aligned} y_{\rho} &= (u_{1}, y_{1} + (u_{2}, y_{2})) \\ &= (z_{1}) \times (z_{1}) \times (z_{2}) \times (z_{2}) \times (z_{2}) \\ \end{aligned}$$

October 3, 2022 11/16

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

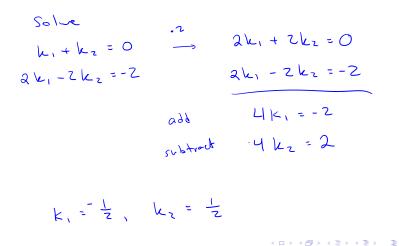
The general solution is $y = C_1 X^2 + C_2 X^2 + Z X^2 \ln x - \frac{1}{2} X^2$ Note: we can set $C_1 \chi^2 - \frac{1}{2} \chi^2 = k_1 \chi^2$ Hence $y = k_1 x^2 + k_2 x^2 + Z x^2 \ln x$ Now, apply y(1) = 0 and y'(1) = 0 y'= 2k, x - 2kz x3 + 4x Inx + 2x2 $y(1) = k_1(1)^2 + k_2(1)^2 + 2(1)^2 \ln \Lambda = 0$ $k_1 + k_2 = 0$ イロン イ団 とく ヨン ・ ヨン …

October 3, 2022 12/16

3

$$y'(1) = 2k_1(1) - 2k_2(1)^3 + Y(1) l_1 + 2(1) = 0$$

 $2k_1 - 2k_2 + 2 = 0$



October 3, 2022 13/16

The solution to the IVP is $y = \frac{1}{2} x^{2} + \frac{1}{2} x^{2} + 2x^{2} \ln x$