October 6 Math 3260 sec. 51 Fall 2025

3.8 Matrix Equations

Matrix-Matrix Equation AX = Y

The matrices A and Y are known. The variable to be solved for is the matrix X.

To solve such an equation, we set up the multiply-augmented matrix $\begin{bmatrix} A \mid Y \end{bmatrix}$ and do row reduction.

Remark 1: The matrix-matrix equation AX = Y is equivalent to the whole collection of matrix-vector equations $A \operatorname{Col}_i(X) = \operatorname{Col}_i(Y)$. This means we can interpret it as a **system of systems** of linear equations.

Remark 2: We are focusing on the square case, that is, where A, Y, and any solution X would be $n \times n$ matrices.

Theorem

Suppose that A and Y are both $n \times n$ (square) matrices and consider the matrix equation AX = Y. Let

$$\widehat{A} = [A \mid Y]$$

be the $n \times (2n)$ multiply-augmented matrix that corresponds to this matrix equation.

1. If rref $(A) = I_n$, then AX = Y has a unique solution. Furthermore

$$\operatorname{rref}\left(\widehat{A}\right) = \left[\begin{array}{c|c} I_n & X \end{array}\right]$$

where *X* is the unique solution of AX = Y.

2. If rref $(A) \neq I_n$, then AX = Y is either inconsistent or has infinitely many solutions.

Remark: If any of the *n* rightmost columns of \widehat{A} is a pivot column, then AX = Y is inconsistent.

2/30

Recall Our Example

Solve the matrix equation AX = Y or show that it is inconsistent.

(a)
$$A = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$$
, and $Y = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$

Last time, we set up the matrix $\begin{bmatrix} A \mid Y \end{bmatrix} = \begin{bmatrix} -1 & -2 & -1 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$, and did row operations to get

$$\operatorname{rref}\left(\begin{bmatrix}A\mid Y\end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 5 & -3 \\ 0 & 1 & -2 & 1 \end{bmatrix}.$$

So the equation AX = Y is consistent and the solution

$$X = \begin{bmatrix} 5 & -3 \\ -2 & 1 \end{bmatrix}.$$

October 6, 2025 3/30

$$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$$

Solve the two matrix-vector equations (with the column vectors from *Y*):

$$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \vec{\chi}_{i} = \langle -1 & -2 \rangle$$

$$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \vec{\chi}_{i} = \langle -1 & -2 \rangle$$

$$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \vec{\chi}_{i} = \langle -1 & -2 \rangle$$

$$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \vec{\chi}_{i} = \langle -1 & -2 \rangle$$

2.
$$A\vec{x}_2 = \langle 1, 1 \rangle$$

$$\vec{\chi}_z = \langle -3, 1 \rangle$$

$$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \overrightarrow{X}_{z} = \langle 1, 1 \rangle$$

$$\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \xrightarrow{\text{(ret)}}$$

October 6, 2025 4/30

Observation

Solving $\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$ is equivalent to solving the two vector equations

$$A\vec{x}_1 = \vec{y}_1$$
 and $A\vec{x}_2 = \vec{y}_2$

where

$$\vec{x}_i = \operatorname{Col}_i(X)$$
 and $\vec{y}_i = \operatorname{Col}_i(Y)$,

which is equivalent to solving two systems of linear equations

$$-1x_{11} - 2x_{21} = -1$$

 $0x_{11} + 1x_{21} = -2$, and $-1x_{12} - 2x_{22} = 1$
 $0x_{12} + 1x_{22} = 1$

5/30

Recall Our Other Example

Prior to the exam, we solved the equation AX = Y, where

$$A = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$$
, and $Y = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

We found that

$$\begin{bmatrix} A \mid I_2 \end{bmatrix} \quad \xrightarrow{rref} \quad \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & 1 & 2 \end{bmatrix}.$$

This showed that $AX = I_2$ is consistent, and that the solution

$$X = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}. \quad AX = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The matrix I_n is the **multiplicative identity** for both the matrix-vector and the matrix-matrix equation, $I_n\vec{x} = \vec{x}$ and $I_nA = A$ (for $n \times n$ matrix A). It has the same role for matrix multiplication as the number 1 has for scalar multiplication.

3.9 Matrix Inversion

Consider the rather straight forward problem:

Solve for *x* given 3x = 17.

To *solve for* or *isolate* x, we want the coefficient of x to be 1, because 1 is the **identity**, i.e.,

$$1x = x$$

for multiplication of real numbers.

3.9 Matrix Inversion

If a is a real number, we can ask whether there is another real number b such that

$$ba = 1$$
.

When such a number b does exist, it is also the case that

$$ab = 1$$
,

and we call b the multiplicative inverse of a.

- The number zero does not have a multiplicative inverse because there is no number b such that b0 = 1.
- ▶ If *a* is **any nonzero** number, then there is a multiplicative inverse a^{-1} . (For real numbers, we also write a multiplicative inverse as $\frac{1}{a}$ and call it a reciprocal.)

3.9 Matrix Inversion

Consider the example we did earlier when we solved $AX = I_2$ for

$$A = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$$
. We found

$$X = \left[\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array} \right].$$

Evaluate XA.

$$X A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

October 6, 2025

Definition

Suppose that *A* is an $n \times n$ matrix. We say that *A* is **invertible** if there exists an $n \times n$ matrix *B* such that $AB = I_n$ and $BA = I_n$.

If *B* is a matrix such that $AB = I_n$ and $BA = I_n$, then we say that *B* is an **inverse** of *A*.

Note that in our definition, we want the two products AB and BA to be the same, and to be the $n \times n$ identity matrix, if B is an inverse of the matrix A.

Show that *B* is an inverse of *A* where $B = \begin{bmatrix} 2 & 4 & 4 \\ 0 & -4 & 2 \\ 0 & 1 & 0 \end{bmatrix}$ and

$$A = \left[\begin{array}{rrr} \frac{1}{2} & -1 & -6 \\ 0 & 0 & 1 \\ 0 & \frac{1}{2} & 2 \end{array} \right].$$

$$AB = \begin{bmatrix} \frac{1}{2} & -1 & -6 \\ 0 & 0 & 1 \\ 0 & \frac{1}{2} & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 0 & -4 & 2 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$BA = \begin{bmatrix} 2 & 4 & 4 \\ 0 & -4 & 2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -1 & -6 \\ 0 & 0 & 1 \\ 0 & \frac{1}{2} & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Theorem: Inverses are Unique

Suppose *A* is an invertible $n \times n$ matrix. Then the inverse of *A* is unique.

This means that A can't have two distinct inverses. That is, if $AB = BA = I_n$ and $AC = CA = I_n$, it must be that B = C.

Note that

Theorem:

Suppose A and B are $n \times n$ matrices such that $AB = I_n$. Then $BA = I_n$.

Remark: This is not a trivial statement. It says that if we find a matrix B such that $AB = I_n$, then we are guaranteed that A and B commute,

i.e.,
$$AB = BA$$
.

And, in fact, that both

$$AB = I_n$$
 and $BA = I_n$.

In order to prove this theorem, we need to remember an important previous theorem.

Notation & The Invertibility Theorem

If B is the inverse of an invertible matrix, A, we will write

 $B=A^{-1}.$

Now we answer two big questions: (1) Which matrices have inverses, and (2) how is an inverse computed?

Invertibility Theorem

Suppose that A is an $n \times n$ matrix. Then A is invertible if and only if $rref(A) = I_n$. Moreover, if A is invertible, and \widehat{A} is the multiply-augmented matrix

$$\widehat{A} = [A \mid I_n],$$

then

$$rref\left(\widehat{A}\right) = \left[I_n \mid A^{-1}\right],$$

Remark: This gives a test for invertibility (the rref is or is not I_n), and a method for finding an inverse!

Example

Determine whether *A* is invertible. If invertible, find its inverse. (Let's do this by hand.)

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$

$$\begin{cases} A \mid T_z \end{cases} = \begin{bmatrix} 2 & 1 & | 10 \\ -1 & 4 & | 01 \end{cases}$$

$$\begin{cases} A \mid T_z \end{cases} = \begin{bmatrix} 2 & 1 & | 10 \\ -1 & 4 & | 01 \end{cases}$$

$$\begin{cases} -1 & 4 & | 01 \\ 2 & 1 & | 10 \end{cases}$$

$$2R_1 + R_2 \rightarrow R_2$$

$$\begin{cases} -1 & 4 & | 01 \\ 0 & 9 & | 12 \end{cases}$$

$$\begin{cases} -1 & 4 & | 01 \\ 0 & 9 & | 12 \end{cases}$$

$$A = \left[\begin{array}{cc} 2 & 1 \\ -1 & 4 \end{array} \right]$$

Chech:
$$\frac{1}{9} \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix}$$

Example

Determine whether *A* is invertible. If invertible, find its inverse.

$$A = \begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{bmatrix}$$

$$\begin{bmatrix} A \mid T_{3} \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ -4 & -7 & 3 & 0 & 1 & 0 \\ -2 & -6 & 4 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{ref}}$$

$$\begin{bmatrix} 1 & 0 \mid 1 & 0 & -3|s & 7|i0 \\ 0 & 1 & -1 & 0 & 1/s & 2/s \\ 0 & 0 & 0 & 1 & 1/s & 1/i0 \end{bmatrix}$$

$$\xrightarrow{\text{ref}}$$

$$T_{3} \qquad A \text{ is not invertible}$$

October 6, 2025

Example

Determine whether *A* is invertible. If invertible, find its inverse.

$$A = \begin{bmatrix} 3 & -1 & -1 \\ 10 & -3 & -5 \\ -6 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} A \mid I_3 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & 0 & 0 & | 1 & 1 & 2 \\ 0 & 1 & 0 & | 0 & 3 & 5 \\ 0 & 0 & 1 & | 2 & 0 & 1 \end{bmatrix}$$

$$A^{-1} \text{ exists ad } A^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 5 \\ 2 & 0 & 1 \end{bmatrix}$$

Matrix-Vector & Matrix-Matrix Equations

Suppose *A* is an invertible $n \times n$ matrix. Then,

• for any vector \vec{y} in R^n , the matrix-vector equation $A\vec{x} = \vec{y}$ has unique solution

$$\vec{x} = A^{-1}\vec{y},$$

▶ and for any $n \times p$ matrix Y, the matrix-matrix equation AX = Y has unique solution

$$X = A^{-1} Y$$
.

