October 9 Math 2306 sec. 51 Fall 2024

Section 9: Method of Undetermined Coefficients

We are considering nonhomogeneous, linear ODEs

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

with restrictions on the left and right sides.

- The left side must be constant coefficient.
- The right side, g(x), has to be one of the following function types:
 - \diamond polynomials,
 - \diamond exponentials,
 - $\diamondsuit\,$ sines and/or cosines,
 - \diamond and products and sums of the above kinds of functions

The **general solution** will have the form $y = y_c + y_p$. The process here is for finding y_p .

The Method of Undetermined Coefficients

We saw some examples last time. The basic process is

- Confirm the ODE has the right properties and classify the function g on the right.
- Set up an ansatz¹ for y_p by assuming it is the same type of function as g but with unknown coefficients.
- Substitute the assumed y_p into the ODE and match *like terms* to find the coefficients that work.

Remark: The complementary solution is found using the process in the last section. This will be a critical part of the process and will usually be done **first**.

¹An **ansatz** is a solution *guess*. It's generally a well informed, educated guess based on the type of problem under consideration. An ansatz typically includes some unspecified features that are to be found in the problem solving process

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

(a) g(x) = 1 (or really any nonzero constant)

$$y_p = A$$

(b) g(x) = x - 7 (1st degree polynomial) $y_p = Ax + B$

(c) $g(x) = 5x^2$ (2^{*nd*} degree polynomial)

$$y_p = Ax^2 + Bx + C$$

(d) $g(x) = 3x^3 - 5$ (3rd degree polynomial)

 $y_p = Ax^3 + Bx^2 + Cx + D$

(e) $g(x) = 12e^{-4x}$ (constant multiple of e^{-4x})

$$y_p = Ae^{-4x}$$

(f) $g(x) = xe^{3x}$ (1st degree polynomial times e^{3x})

 $y_p = (Ax + B)e^{3x}$

Remark: The last example can also be written as $y_p = Axe^{3x} + Be^{3x}$. The key point is that the factor *x* in *g* needs to be thought of as a first degree polynomial.

(g) $g(x) = \cos(7x)$ (linear combo of cosine and sine of 7x)

 $y_p = A\cos(7x) + B\sin(7x)$

(h) $g(x) = x^2 \sin(3x)$ (linear combo 2^{nd} degree polynomial time sine and 2^{nd} degree poly times cosine)

$$y_p = (Ax^2 + Bx + C)\sin(3x) + (Dx^2 + Ex + F)\cos(3x)$$

Remark: Note that there are exactly six like terms, $x^2 \sin(3x)$, $x^2 \cos(3x)$, $x \sin(3x)$, $x \cos(3x)$, $\sin(3x)$, and $\cos(3x)$. They each need their own coefficient, A, B, \ldots, F .

(i) $g(x) = e^x \cos(2x)$ (linear combo of e^x cosine and e^x sine of 2x)

(j) $g(x) = xe^{-x} \sin(\pi x)$ (linear combo of 1^{*st*} poly times e^{-x} sine and 1^{*st*} poly times e^{-x} cosine)

$$y_{P} = (A_{X+B})e^{-X} \leq_{i+} (\pi_{X}) + (C_{X+D})e^{-X} c_{s}(\pi_{X})$$

Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.
- Constants inside of sines, cosines, and exponentials (e.g., the "2" in e^{2x} or the "π" in sin(πx)) are not undetermined. We don't change those.

Caution

- The method is self correcting, meaning if the initial guess is wrong, it will become apparant. But it's best to get the set up correct to avoid unnecessary work.
- Constant really means constant. None of the coefficients can end up depending on the variable x.
- The form of y_p can depend on y_c, but this hasn't been considered yet. (We'll come back to this shortly.)

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x)$
 y_{p_2} solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_2(x)$,
and so forth.

Then $y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

C

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^{2}$$

we can consider two Sub problems
$$y'' - 4y' + 4y = 6e^{-3x} \quad ad$$
$$y'' - 4y' + 4y = 16x^{2}$$

For $a_{1}(x) = 6e^{-3x}, \quad y_{P_{1}} = Ae^{-3x}$
 $a_{2}(x) = 16x^{2}, \quad y_{P_{2}} = 75x^{2} + 6x + 7$

For the Whole ODE,

 $y_{p} = Ae^{-3x} + Bx^{2} + Cx + D$

A Glitch!

What happens if the assumed form for y_p is part² of y_c ? Consider applying the process to find a particular solution to the ODE

²A term in g(x) is contained in a fundamental solution set of the associated homogeneous equation.

Our choice for yp= A ex is a solution to the associated honoseneous equation. Find yo: yo'-zyo'=0 Characteristic egn (-21=0 =) r(r-2)=0 1=0, **[**=2 $y_1 = e^{0x} = 1$, $y_2 = e^{2x}$ We can try to solvage the method by multiplying is guess yp by a factor Set $y_r = (A_e^{zx})x = A_x e^{zx}$ of x. $y''-2y'=3e^{2x}$

Sub our gress into the oDt.

$$y_{e} = A \times e^{2x}$$

 $y_{e}' = A e^{2x} + 2A \times e^{2x}$
 $y_{e}'' = 2A e^{2x} + 2A e^{2x} + 4A \times e^{2x}$
 $y_{e}'' = -2y_{e}' = 3e^{2x}$
 $4A e^{2x} + 4A \times e^{2x} - 2(A e^{2x} + 2A \times e^{2x}) = 3e^{2x}$
 $Collect like terns e^{2x}, xe^{2x}$
 $x e^{2x} (4A - 4A) + e^{2x} (4A - 2A) = 3e^{2x}$
 $2A e^{2x} = 3e^{2x}$
 $2A = 3 = A = \frac{3}{2}$

The persicular solution is $y_p = \frac{3}{2} \times e^{2x}$ Using y,=1, yz= ex, the general isolution is $y = c_1 + c_2 e^{2x} + \frac{3}{2} x e^{2x}$

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_i(x)$$

The first thing we do is solve the associated homogeneous equation,

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = 0,$$

for the complementary solution y_c .

Case 1:

We write out our guess for y_{p_i} using the general rules of thumb and principles already discussed (see all the examples we went through). We compare our guess for y_{p_i} to y_c and **there are no like terms in common**.

We have the correct form for y_{p_i} so we start the substitution process and complete finding our particular solution.

Remark: All the examples so far, up to the slide that says "A Glitch!," were Case 1 examples.

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_i(x)$

Case 2:

We write out our guess for y_{p_i} using the general rules of thumb and principles already discussed. We compare our guess for y_{p_i} to y_c and there is one or more like terms in common between y_{p_i} and y_c .

We have to adjust our form of y_{p_i} . We do this by multiplying the whole function y_{p_i} by a factor of x^n , where *n* is the smallest positive integer such that our new y_{p_i} has no like terms in common with y_c .

Once we have the correct format for y_{p_i} , we start the substitution process and complete finding our particular solution.

Remark: In practice, we can multiply by *x*. If the new y_{p_i} still has a like term in common with y_c , multiply by *x* again. Continue to multiply by *x* until there are no common like terms left. That is, we don't have to know what *n* is up front.