October 9 Math 2306 sec. 51 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

The general solution, $y = y_c + y_p$ will require both y_c and y_p . The associated homogeneous equation will be constant coefficient, so we use the method of the last section to find y_c .

Method Basics: $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$

- ► Classify g as a certain type, and assume y_p is of this same type¹ with unspecified coefficients, A, B, C, etc.
- \triangleright Substitute the assumed y_p into the ODE and collect like terms ansatz
- Match like terms on the left and right to get equations for the coefficients.
- Solve the resulting system to determine the coefficients for y_n.

¹We will see shortly that our final conclusion on the format of y_p can depend on $y_{q,q}$

Some Rules & Caveats

Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.
- Constants inside of sines, cosines, and exponentials (e.g., the "2" in e^{2x} or the " π " in $\sin(\pi x)$) are not undetermined. We don't change those.

Caution

- ➤ The method is self correcting, but it's best to get the set up correct.
- ▶ The form of y_p can depend on y_c . (More about this later.)

Examples of Forms of y_p based on g (Trial Guesses)

We were considering different types of right hand side functions to determine the correct format for y_p .

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

(i) $g(x) = e^x \cos(2x)$ (linear combo of e^x cosine and e^x sine of 2x)

(j) $g(x) = xe^{-x}\sin(\pi x)$ (linear combo of 1st poly times e^{-x} sine and 1st poly times e^{-x} cosine)

Examples of Forms of y_p based on g (Trial Guesses)

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

Right Hand Side	Particular Solution Set Up
g(x) = 1	$y_{\rho}=A$
g(x)=x-7	$y_p = Ax + B$
$g(x)=5x^2$	$y_p = Ax^2 + Bx + C$
$g(x) = 3x^3 - 5$	$y_p = Ax^3 + Bx^2 + Cx + D$
$g(x) = xe^{3x}$	$y_p = (Ax + B)e^{3x}$
$g(x)=\cos(7x)$	$y_p = A\cos(7x) + B\sin(7x)$
$g(x) = \sin(2x) - \cos(4x)$	$y_p = A\sin(2x) + B\cos(2x) + C\sin(4x) + D\cos(4x)$
$g(x) = x^2 \sin(3x)$	$y_p = (Ax^2 + Bx + C)\sin(3x) + (Dx^2 + Ex + F)\cos(3x)$
$g(x) = e^x \cos(2x)$	$y_p = Ae^x \cos(2x) + Be^x \sin(2x)$
$g(x) = xe^{-x}\sin(\pi x)$	$y_p = (Ax + B)e^{-x}\sin(\pi x) + (Cx + D)e^{-x}\cos(\pi x)$

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \cdots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x)$

$$y_{p_2}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_2(x),$

and so forth.

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

be can find yp, that solves
$$y_{p_i}" - 4y_{p_i} + 4y_{p_i} = 6e^{-3x}$$

g,(x) = 6e-3x

Then yp = yp, +ypz

yp= Ae-3x + Bx2+ Cx +D

A Glitch!

What happens if the assumed form for y_p is part² of y_c ? Consider applying the process to find a particular solution to the ODE

$$y'' - y' = 3e^{x}$$
 Contact cost left, exponential right.
 $g(x) = 3e^{x}$ constant times e^{x}
But $y_{p} = Ae^{x}$ substitute
 $y_{p}'' = Ae^{x}$ $y_{p}'' - y_{p}' = 3e^{x}$ $y_{p}'' - Ae^{x} = 3e^{x}$ $y_{p}'' = Ae^{x}$ $y_{p}'' = Ae^{x}$ $y_{p}'' - Ae^{x} = 3e^{x}$ $y_{p}'' = Ae^{x}$ $y_{p}'' = Ae^{x}$

²A term in g(x) is contained in a fundamental solution set of the associated homogeneous equation. 4 D > 4 A > 4 B > 4 B > B

Let's consider yo: yo"-yo'=0

Characteristic egn $m^2 - m = 0 \Rightarrow m(m-1) = 0$ reds m = 0 on m = 1 two roots

y= e = 1, y= ex = &

Based on experience of homogeneous equations, we can try multiplying our yp by x. i.e.,

try $y_p = x (Ae^x) = Axe^x + xe^x + xe$

Sp" - Sp! = 38

 $A \times \mathring{e} + 2A \mathring{e} - (A \times \mathring{e} + A \mathring{e}) = 3 \mathring{e}$ Collect $\times \mathring{e}$ and \mathring{e} terms $\times \mathring{e} (A - A) + \mathring{e} (2A - A) = 3 \mathring{e}$ $A \mathring{e} = 3 \mathring{e} \implies A = 3$

we found particular solution

yp = 3x &

The general solution, yether is $y = C_1 + C_2 + 3x = 3$

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case I: The guess for y_{p_i} **DOES NOT** have any like terms in common with y_c .

Then our guess for y_{p_i} will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case II: The guess for y_{ρ_i} **DOES** have a like term in common with y_c .

Then we multiply our guess at y_{p_i} by x^n where n is the smallest positive integer such that our new guess $x^n y_{p_i}$ does not have any like terms in common with y_c . Then we take this new guess and substitute to find the A, B, etc.

Case II Examples

Find the general solution of the ODE.

The left side is constant colf and the right is an exponential. Let's find ye.

Characteritic on
$$m^2 - 2n + 1 = 0$$
 $(m-1)^2 = 0 \Rightarrow m = 1$ double $(m-1)^2 = 0 \Rightarrow m = 1$ double root

 $y = e^x \quad y = x e^x \Rightarrow |y_c = c, e^x + c_2 x e^x$

Now find y_e : $g(x) = -ue^x$ constant times e^x
 $y_e = Ae^x$ like term ul y_1

Correct $y_e = (Ae^x)_x = Axe^x$ like term ul $y_1 = ue^x$

October 9, 2023 14/26

yp = x (Axe) = Axed This is the correct form.

Sub: yp = Ax² & yo' = Ax² & + 2Ax & yp" = Ax² & + 2Ax & + 2Ax & + 2A & = Ax² & + 4Ax & + 2A &

yp" - 25p' + yp = -4ex

Azě+4Axě+ZAě -2(Azě+ZAxě)+Azě =-4ě

Collect &, xex, xiex

x²ě (A-2A+A)+ xě (4A-4A) + 2A ě = -4 ě

2Ae = -4ex

A = -2

Hence yp = -2x2ex

Find the form of the particular soluition

$$y'' - 4y' + 4y = \sin(4x) + xe^{2x}$$
Find yo: $m^2 - 4me = 4 = 0 \Rightarrow (m-2)^2 = 0 \Rightarrow m=2$ Double not $y_1 = e^{2x}$, $y_2 = xe^{2x}$
Look for y_{p_1} that solves

Find you that solver

$$y_{p_{1}}^{11} - 4y_{p_{1}}^{1} + 4y_{p_{1}} = \chi e^{2x}$$

$$y_{p_{2}} = (c_{x}+D)e^{2x} = c_{x}e^{2x} + De^{2x} \times d^{2x}$$

$$y_{p_{2}} = (c_{x}+D)x^{2x} = c_{x}e^{2x} + Dxe^{2x} \times d^{2x}$$

$$y_{p_{2}} = (c_{x}+D)x^{2}e^{2x} = c_{x}e^{2x} + Dx^{2}e^{2x}$$

$$y_{p_{2}} = (c_{x}+D)x^{2}e^{2x} = c_{x}e^{2x} + Dx^{2}e^{2x}$$

$$y_{p_{3}} = A\sin(4x) + B(\omega(4x) + c_{x}e^{2x} + Dx^{2}e^{2x})$$