October 9 Math 2306 sec. 52 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

The general solution, $y=y_{c}+y_{p}$ will require both y_{c} and y_{p}. The associated homogeneous equation will be constant coefficient, so we use the method of the last section to find y_{c}.

Method Basics: $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)$

- Classify g as a certain type, and assume y_{p} is of this same type ${ }^{1}$ with unspecified coefficients, A, B, C, etc.
- Substitute the assumed y_{p} into the ODE and collect like terms
- Match like terms on the left and right to get equations for the coefficients.
- Solve the resulting system to determine the coefficients for y_{p}.

[^0]
Some Rules \& Caveats

Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.
- Constants inside of sines, cosines, and exponentials (e.g., the " 2 " in $e^{2 x}$ or the " π " in $\sin (\pi x)$) are not undetermined. We don't change those.

Caution

- The method is self correcting, but it's best to get the set up correct.
- The form of y_{p} can depend on y_{c}. (More about this later.)

Examples of Forms of y_{p} based on g (Trial Guesses)

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

Right Hand Side	Particular Solution Set Up
$g(x)=1$	$y_{p}=A$
$g(x)=x-7$	$y_{p}=A x+B$
$g(x)=5 x^{2}$	$y_{p}=A x^{2}+B x+C$
$g(x)=3 x^{3}-5$	$y_{p}=A x^{3}+B x^{2}+C x+D$
$g(x)=x e^{3 x}$	$y_{p}=(A x+B) e^{3 x}$
$g(x)=\cos (7 x)$	$y_{p}=A \cos (7 x)+B \sin (7 x)$
$g(x)=\sin (2 x)-\cos (4 x)$	$y_{p}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)$
$g(x)=x^{2} \sin (3 x)$	$y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)$
$g(x)=e^{x} \cos (2 x)$	$y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)$
$g(x)=x e^{-x} \sin (\pi x)$	$y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)$

The Superposition Principle

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_{p} by considering separate problems

$$
\begin{array}{ll}
y_{p_{1}} \text { solves } & a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x) \\
y_{p_{2}} \text { solves } & a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{2}(x)
\end{array}
$$

and so forth.
Then $y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}$.

The Superposition Principle
Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

Find $y_{p_{1}}$ that solves

$$
\begin{aligned}
& y_{p_{1}}^{\prime \prime}-4 y_{p_{1}^{\prime}}^{\prime}+4 y_{p_{1}}=6 e^{-3 x} \\
& g_{1}(x)=6 e^{-3 x} \quad \text { a constant tines } e^{-3 x} \\
& \text { sit } y_{p_{1}}=A e^{-3 x}
\end{aligned}
$$

Thin find $y_{p_{2}}$ that solves

$$
y_{p_{2}}^{\prime \prime}-4 y_{p_{2}}^{\prime}+4 y_{p_{2}}=16 x^{2}
$$

$g_{2}(x)=16 x^{2} \quad 2^{\text {nd }}$ degree poly.
Set $y_{B_{2}}=B x^{2}+C x+D$

Then $y_{p}=y_{p_{1}}+y_{p_{2}}$

$$
y_{p}=A e^{-3 x}+B x^{2}+C x+D
$$

A Glitch!
What happens if the assumed form for y_{p} is part ${ }^{2}$ of y_{c} ? Consider applying the process to find a particular solution to the ODE

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=3 e^{x} \\
& g(x)=3 e^{x} \quad \text { Constant times } e^{x} \\
& y_{p}=A e^{x} \text { sub this into the } O D E \\
& y_{p}{ }^{\prime}=A e^{x} \\
& y_{\theta}{ }^{\prime \prime}=A e^{x}
\end{aligned}
$$

Our form for y_{p} is pant of y_{c} !
${ }^{2}$ A term in $g(x)$ is contained in a fundamental solution set of the associated homogeneous equation.

Let's find $y_{c}: \quad y_{c}{ }^{\prime \prime}-y_{c}{ }^{\prime}=0$
Characteristic eqn $m^{2}-m=0$

$$
m(m-1)=0 \Rightarrow m=0 \text { or } m=1
$$ two real routs

$$
\begin{gathered}
y_{1}=e^{0 x}=1, y_{2}=e^{1 x}=e^{x} \\
y_{c}=c_{1}+c_{2} e^{x}
\end{gathered}
$$

Based an experience w) repeated roots for himosenous equations, we might try multiplying our guess for y_{p} by a factor of x.

Set

$$
\begin{aligned}
& y_{p}=\left(A e^{x}\right) x=A x e^{x} \quad \text { sib this } \\
& y_{p}^{\prime}=A x e^{x}+A e^{x} \\
& y_{p}^{\prime \prime}=A x e^{x}+A e^{x}+A e^{x}=A x e^{x}+2 A e^{x}
\end{aligned}
$$

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}=3 e^{x} \\
A x e^{x}+2 A e^{x}-\left(A_{x} e^{x}+A e^{x}\right)=3 e^{x}
\end{gathered}
$$

Collect $x e^{x}$ and e^{x} terms

$$
\begin{aligned}
x e^{x}(A-A)+e^{x}(2 A-A) & =3 e^{x} \\
A e^{3} & =3 e^{x} \Rightarrow A=3
\end{aligned}
$$

we found $y_{p}=3 x e^{x}$

The several solution $y_{c}+y_{p}$ is

$$
y=c_{1}+c_{2} e^{x}+3 x e^{x}
$$

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case I: The guess for $y_{p_{i}}$ DOES NOT have any like terms in common with y_{c}.

Then our guess for $y_{p_{i}}$ will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case II: The guess for $y_{p_{i}}$ DOES have a like term in common with y_{c}.
Then we multiply our guess at $y_{p_{i}}$ by x^{n} where n is the smallest positive integer such that our new guess $x^{n} y_{p_{i}}$ does not have any like terms in common with y_{c}. Then we take this new guess and substitute to find the A, B, etc.

Case II Examples
Find the general solution of the ODE.

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

The leftis constant conf, and the right is an exponentide.
Find y_{c} first.
Characteristic equ: $m^{2}-2 m+1=0$

$$
y_{1}=e^{1 x}, y_{2}=x e^{1 x} \Rightarrow y_{c}=c_{1} e^{x}+c_{2} x e^{x}
$$

Find $y_{p}: \quad g(x)=-4 e^{x}$
set $y_{p}=A e^{x} \quad$ common like term w / y_{c}
$y_{p}=\left(A e^{x}\right)_{x}=A_{x} e^{x}$ still a common like term
$y_{p}=x^{2}\left(A e^{x}\right)=A x^{2} e^{x} \quad$ this is correct.
substitute:

$$
\begin{aligned}
y_{p}^{\prime} & =A x^{2} e^{x}+2 A x e^{x} \\
y_{p}^{\prime \prime} & =A x^{2} e^{x}+2 A x e^{x}+2 A x e^{x}+2 A e^{x} \\
& =A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}
\end{aligned}
$$

$$
\begin{gathered}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=-4 e^{x} \\
A x^{x} e^{x}+4 A x e^{x}+2 A e^{x}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
\end{gathered}
$$

collect $x^{2} e^{x}, x e^{x}$ and e^{x} terns.

$$
\begin{gathered}
x^{2} e^{x}(A-2 A+A)+x e^{x}(4 A-4 A)+2 A e^{x}=-4 e^{x} \\
2 A e^{x}=-4 e^{x} \\
\Rightarrow A=-2
\end{gathered}
$$

Hence $y_{p}=-2 x^{2} e^{x}$
The general solution, $y_{c}+y_{p}$, is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

Find the form of the particular solution

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find y_{c} first: $m^{2}-4 m+4=0$

$$
\begin{aligned}
\text { Ic first: } \begin{aligned}
& m^{2}-4 m+4=0 \\
&(m-2)^{2}=0 \Rightarrow m=2 \text { Double } \\
& \text { Root }
\end{aligned} \\
y_{1}=e^{2 x} \text { and } y_{2}=x e^{2 x} \quad y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
\end{aligned}
$$

Find y_{p}, that solves

$$
\begin{aligned}
& y_{\rho_{1}}{ }^{\prime \prime}-4 y_{\rho_{1}}{ }^{\prime}+4 y_{p_{1}}=\sin (4 x) \quad g_{1}(x)=\sin (4 x) \\
& y_{p}=A \sin (4 x)+B \cos (4 x) \\
& y_{1}=e^{2 x}, \quad y_{2}=x e^{2 x}
\end{aligned}
$$

Find $y_{p_{2}}$ that solves

$$
\begin{aligned}
& y_{p_{2}}^{\prime \prime}-4 y_{p_{2}}^{\prime}+4 y_{p_{2}}=x e^{2 x} \quad g(x)=x e^{2 x} \\
& x y_{p_{2}}=(C x+D) e^{2 x}=C x e^{2 x}+D e^{2 x} \quad x \text { liwe wims } \\
& x y_{p_{2}}=(C x+D) e^{2 x} \cdot x=C x^{2} e^{2 x}+D x e^{2 x} \quad x \text { sxill hos } \\
& y_{p_{2}}=(C x+D) e^{2 x} \cdot x^{2}=C x^{3} e^{2 x}+D x^{2} e^{2 x} \text { colken tein } \\
& y_{p}=y_{p_{1}}+y_{p_{2}} \\
&=A \sin (4 x)+B \cos (4 x)+C x^{3} e^{2 x}+D x^{2} e^{2 x}
\end{aligned}
$$

[^0]: ${ }^{1}$ We will see shortly that our final conclusion on the format of y_{p} can depend on y_{c}

