October 9 Math 2306 sec. 52 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

The general solution, $y = y_c + y_p$ will require both y_c and y_p . The associated homogeneous equation will be constant coefficient, so we use the method of the last section to find y_c .

Method Basics: $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g(x)$

- Classify g as a certain type, and assume y_p is of this same type¹ with unspecified coefficients, A, B, C, etc.
- Substitute the assumed y_p into the ODE and collect like terms
- Match like terms on the left and right to get equations for the coefficients.
- Solve the resulting system to determine the coefficients for y_p .

¹We will see shortly that our final conclusion on the format of y_p can depend on y_{cAC}

Some Rules & Caveats

Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.
- Constants inside of sines, cosines, and exponentials (e.g., the "2" in e^{2x} or the "π" in sin(πx)) are not undetermined. We don't change those.

Caution

- The method is self correcting, but it's best to get the set up correct.
- The form of y_p can depend on y_c . (More about this later.)

Examples of Forms of y_p based on g (Trial Guesses)

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g(x)$

Right Hand Side	Particular Solution Set Up
g(x) = 1	$y_{ ho} = A$
g(x)=x-7	$y_{ ho} = Ax + B$
$g(x)=5x^2$	$y_{\rho} = Ax^2 + Bx + C$
$g(x)=3x^3-5$	$y_{\rho} = Ax^3 + Bx^2 + Cx + D$
$g(x) = xe^{3x}$	$y_{ ho} = (Ax + B)e^{3x}$
$g(x) = \cos(7x)$	$y_{\rho} = A\cos(7x) + B\sin(7x)$
$g(x) = \sin(2x) - \cos(4x)$	$y_{p} = A\sin(2x) + B\cos(2x) + C\sin(4x) + D\cos(4x)$
$g(x) = x^2 \sin(3x)$	$y_{\rho} = (Ax^2 + Bx + C)\sin(3x) + (Dx^2 + Ex + F)\cos(3x)$
$g(x) = e^x \cos(2x)$	$y_{\rho} = Ae^x \cos(2x) + Be^x \sin(2x)$
$g(x) = xe^{-x}\sin(\pi x)$	$y_{\rho} = (Ax + B)e^{-x}\sin(\pi x) + (Cx + D)e^{-x}\cos(\pi x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x) + \dots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x)$
 y_{p_2} solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_2(x)$,
and so forth.

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

Find
$$y_{P_1}$$
 that solver
 $y_{P_1}'' - 4y_{P_1}' + 4y_{P_1} = 6e^{3x}$
 $g_1(x) = 6e^{3x}$ a constant times e^{3x}
Set $y_{P_1} = Ae^{3x}$
Thus find y_{P_2} that solves
 $y_{P_2}'' - 4y_{P_2}' + 4y_{P_2} = 16x^2$

g2(x)= 16x2 2nd degree poly. Set yez = Bx2+ Cx+D

Then
$$y_{P} = y_{P_{1}} + y_{P_{2}}$$

 $y_{P} = Ae^{3n} + Bx^{2} + Cx + D$

October 9, 2023 8/26

A Glitch!

What happens if the assumed form for y_p is part² of y_c ? Consider applying the process to find a particular solution to the ODE

²A term in g(x) is contained in a fundamental solution set of the associated homogeneous equation.

Let's find ye : y." - y. = 0 Character.st.c egh $M^2 - M = 0$ m(m-1)=0 > m=0 or m=1 two real routs $y_1 = e^{x} = 1$, $y_2 = e^{1x} = e^{x}$ $y_c = C_1 + C_2 e^{\chi}$ Based on experience w) repeated roots for himogenous equations, we might try multiplying our gress for yp by a factor of X. Sub This Set yp= (Ae)x = Axe yr'= Axe + Ae Je" = Axe + Ae + Ae = Axe + 2Ae

October 9, 2023 10/26

◆ロト ◆聞 と ◆臣 と ◆臣 と 三臣 -

October 9, 2023 11/26

イロト 不得 トイヨト イヨト 二日

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{D_i} and compare it to $y_c(x)$.

Case I: The guess for y_{p_i} **DOES NOT** have any like terms in common with y_c .

Then our guess for y_{D_i} will work as written. We do the substitution to find the A, B, etc.

> ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ October 9, 2023

12/26

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case II: The guess for y_{p_i} **DOES** have a like term in common with y_c .

Then we multiply our guess at y_{p_i} by x^n where *n* is the smallest positive integer such that our new guess $x^n y_{p_i}$ does not have any like terms in common with y_c . Then we take this new guess and substitute to find the *A*, *B*, etc.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ

Case II Examples

Find the general solution of the ODE.

$$y'' - 2y' + y = -4e^{x}$$
The left is an exponentive.
Find y_c first.
Characteristic eqn: $m^{2} - 2m + 1 = 0$
 $(m - 1)^{2} = 0 \Rightarrow m = 1$ Toole
 $y_{1} = e^{4x}$, $y_{2} = xe^{4x} \Rightarrow y_{c} = c_{1}e^{2} + c_{2}xe^{2}$
Find y_p: $g(x) = -4e^{2}$
set $y_{p} = Ae^{2}$ annon like tem u/ y_c ×
 $y_{p} = (Ae^{2})_{x} = Axe^{2}$ Still a common like
 $term$
 $(m + e^{2})_{x} = xe^{2} = xe^{2}$

substitute:
$$y_p' = Ax^2 e^{x} + 2Ax e^{x}$$

 $y_p'' = Ax^2 e^{x} + 2Ax e^{x} + 2Ax e^{x} + 2Ax e^{x}$
 $= Ax^2 e^{x} + 4Ax e^{x} + 2Ae^{x}$

$$y_{P}" - 2y_{e}" + y_{P} = -4e^{x}$$

$$Axe^{x} + 4Axe^{x} + 2Ae^{x} - 2(Axe^{x} + 2Axe^{x}) + Ax^{2}e^{x} = -4e^{x}$$

$$collect \quad x^{2}e^{x}, \quad xe^{x} = Ae^{x} e^{x} + e^{x}$$

$$collect \quad x^{2}e^{x}, \quad xe^{x} = Ae^{x} e^{x} + e^{x}$$

$$x^{2}e^{x}(A - 2A + A) + xe^{x}(4A - 4A) + 2Ae^{x} = -4e^{x}$$

$$aAe^{x} = -4e^{x}$$

$$aAe^{x} = -4e^{x}$$

$$aA = -2$$

October 9, 2023 15/26

・ロト・西ト・ヨト・ヨー うへの

Hence
$$y_p = -Zx^2e^x$$

The general solution, $y_e + y_p$, is
 $y = c_i \tilde{e} + c_i x \tilde{e} - 2x^2 \tilde{e}^x$

October 9, 2023 16/26

Find the form of the particular soluition

$$y'' - 4y' + 4y = \sin(4x) + xe^{2x}$$

Find y_c first \cdots $m^2 - 4m + 4 = 0$
 $(m-2)^2 = 0 \implies m = 2$ Double
 $y_1 = e^{2x}$ and $y_2 = xe^{2x}$ $y_c = C_1 e^{2x} + C_2 x e^{2x}$
Find y_{p_1} has solves
 y_{q_2} " $- 4y_{p_1}$ + $4y_{p_2}$ = $\sin(4x)$ $g_1(x) = \sin(4x)$
 y_{q_2} = A $\sin(4x) + B \cos(4x)$ correct

y1= e^{2x}, y2= xe^{2x}

< □ → < □ → < □ → < ■ → < ■ → < ■ → < ■ → < ○ へ () October 9, 2023 18/26

Find ypz that solves $y_{\theta_{\lambda}}'' - y_{\theta_{\lambda}} + y_{\theta_{\lambda}} = \chi e^{2\chi} \qquad g(\chi) = \chi e^{2\chi}$ $\times y_{p_2} = (C \times +D)e^{2x} = C \times e^{2x} + De^{2x} \times u^{1/2} y_{c}$ X $y_{P_2} = (Cx+D)e^{2x} \cdot x = Cx^2e^{2x} + Dxe^{2x} \times St.II$ has $y_{P_2} = (C_{x+D})e^{2x} \cdot x^2 = C_x^3 e^{2x} + D_x^2 e^{2x} \sqrt{\frac{1}{14}e^{2x}}$

 $y_{p} = y_{p_1} + y_{p_2}$ = $A \sin(y_x) + B \cos(y_x) + Cx^3 e^{2x} + Dx^2 e^{2x}$