October 9 Math 2306 sec. 53 Fall 2024

Section 9: Method of Undetermined Coefficients

We are considering nonhomogeneous, linear ODEs

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

with restrictions on the left and right sides.

- The left side must be constant coefficient.
- ▶ The right side, g(x), has to be one of the following function types:
 - ♦ polynomials,
 - exponentials,
 - ♦ sines and/or cosines,
 - and products and sums of the above kinds of functions

The **general solution** will have the form $y = y_c + y_p$. The process here is for finding y_p .

The Method of Undetermined Coefficients

We saw some examples last time. The basic process is

- Confirm the ODE has the right properties and classify the function g on the right.
- Set up an ansatz¹ for y_p by assuming it is the same *type* of function as g but with unknown coefficients.
- Substitute the assumed y_p into the ODE and match *like terms* to find the coefficients that work.

Remark: The complementary solution is found using the process in the last section. This will be a critical part of the process and will usually be done **first**.

¹An **ansatz** is a solution *guess*. It's generally a well informed, educated guess based on the type of problem under consideration. An ansatz typically includes some unspecified features that are to be found in the problem solving process

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

(a) g(x) = 1 (or really any nonzero constant)

$$y_D = A$$

(b) g(x) = x - 7 (1st degree polynomial)

$$y_p = Ax + B$$

(c) $g(x) = 5x^2$ (2nd degree polynomial)

$$y_p = Ax^2 + Bx + C$$

(d) $g(x) = 3x^3 - 5$ (3rd degree polynomial)

$$y_p = Ax^3 + Bx^2 + Cx + D$$

(e)
$$g(x) = 12e^{-4x}$$
 (constant multiple of e^{-4x})
$$y_p = Ae^{-4x}$$

(f)
$$g(x) = xe^{3x}$$
 (1st degree polynomial times e^{3x})

$$y_p = (Ax + B)e^{3x}$$

Remark: The last example can also be written as $y_p = Axe^{3x} + Be^{3x}$. The key point is that the factor x in g needs to be thought of as a first degree polynomial.

(g) $g(x) = \cos(7x)$ (linear combo of cosine and sine of 7x)

$$y_p = A\cos(7x) + B\sin(7x)$$

(h) $g(x) = x^2 \sin(3x)$ (linear combo 2^{nd} degree polynomial time sine and 2^{nd} degree poly times cosine)

$$y_p = (Ax^2 + Bx + C)\sin(3x) + (Dx^2 + Ex + F)\cos(3x)$$

Remark: Note that there are exactly six like terms, $x^2 \sin(3x)$, $x^2 \cos(3x)$, $x \sin(3x)$, $x \cos(3x)$, $\sin(3x)$, and $\cos(3x)$. They each need their own coefficient, A, B, \ldots, F .

(i) $g(x) = e^x \cos(2x)$ (linear combo of e^x cosine and e^x sine of 2x)

(j) $g(x) = xe^{-x} \sin(\pi x)$ (linear combo of 1st poly times e^{-x} sine and 1st poly times e^{-x} cosine)

$$y_{e} = (Ax + B)e^{-x}S_{m}(\pi \times 1 + (Cx + D)e^{-x}C_{m}(\pi \times 1 + Cx + D)e^$$

Rules of Thumb

- ▶ Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.
- Constants inside of sines, cosines, and exponentials (e.g., the "2" in e^{2x} or the " π " in $\sin(\pi x)$) are not undetermined. We don't change those.

Caution

- ► The method is self correcting, meaning if the initial *guess* is wrong, it will become apparant. But it's best to get the set up correct to avoid unnecessary work.
- Constant really means constant. None of the coefficients can end up depending on the variable x.
- ► The form of y_p can depend on y_c , but this hasn't been considered yet. (We'll come back to this shortly.)

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x)$
 y_{p_2} solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_2(x)$,

and so forth.

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

Using superposition, we can set up two sub problems.

$$y'' - 4y' + 4y = 6e^{-3x}$$
 $g_1(x) = 6e^{-3x}$
 $y'' - 4y' + 4y = 16x^2$ $g_2(x) = 16x^2$

For
$$g_{1}(x) = 6e^{-3x}$$
, $y_{p_{1}} = Ae^{-3x}$
 $g_{2}(x) = 16x^{2}$, $y_{p_{2}} = Bx^{2} + Cx + D$

For the whole problem, $y_p = Ae^{-3x} + Bx^2 + Cx + D$,

A Glitch!

What happens if the assumed form for y_p is part² of y_c ? Consider applying the process to find a particular solution to the ODE

$$y'' - 2y' = 3e^{2x}$$

 $3(x) = 3e^{2x}$ set $yp = Ae^{2x}$
Sub into the dDE . $yp = Ae^{2x}$, $yp' = 2Ae^{2x}$, $yp'' = 4Ae^{2x}$
we need $yp'' - 2xp' = 3e^{2x}$
 $4Ae^{2x} - 2(zAe^{2x}) = 3e^{2x}$
 $0 = 3e^{2x}$ prior for of a second A .

 $^{^{2}}$ A term in g(x) is contained in a fundamental solution set of the associated homogeneous equation.

Our guess yp: Ae's is part of the complementary

Let's find you you solves y = 2 y = 0

The character is egn is L(1-5)=0 => (=5)

Based on the double root case for honogeneous oquations, we could try modifying yp by adding a factor x.

Set
$$y_p = (A_e^{2x})_x = A_{xe}^{2x}$$

Sub this in.

$$y''-2y'=3e^{2x}$$

$$y_{e} = A \times e^{2x}$$

$$y_{e}' = A e^{2x} + 2A \times e^{2x}$$

$$y_{e}'' = 2A e^{2x} + 2A e^{2x} + 4A \times e^{2x} + 4A \times e^{2x}$$

$$y_{e}'' = 2A e^{2x} + 2A e^{2x} + 4A \times e^{2x} + 4A \times e^{2x}$$

$$y_{e}'' = 2A e^{2x} + 2A e^{2x} + 2A e^{2x} + 4A \times e^{2x}$$

$$y_{e}'' = 2A e^{2x} + 2A e^{2x} + 2A \times e^{2x}$$

$$y_{e}'' = 3e^{2x}$$

$$x_{e}'' = 3e^{2x}$$

$$2A = 3 \Rightarrow A = \frac{3}{2}$$

So
$$y_p = \frac{3}{2} \times e$$

with $y_i = 1$, $y_z = e^x$.

The general solution is

 $y = c_1 + c_2 e^x + \frac{3}{2} \times e^x$

the general solution is

$$y = C_1 + C_2 e^{2x} + \frac{3}{2} \times e^{x}$$

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_i(x)$$

The first thing we do is solve the associated homogeneous equation,

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = 0,$$

for the complementary solution y_c .

Case 1:

We write out our guess for y_{p_i} using the general rules of thumb and principles already discussed (see all the examples we went through). We compare our guess for y_{p_i} to y_c and **there are no like terms in common**.

We have the correct form for y_{p_i} so we start the substitution process and complete finding our particular solution.

Remark: All the examples so far, up to the slide that says "A Glitch!," were Case 1 examples.

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_i(x)$$

Case 2:

We write out our guess for y_{p_i} using the general rules of thumb and principles already discussed. We compare our guess for y_{p_i} to y_c and there is one or more like terms in common between y_{p_i} and y_c .

We have to adjust our form of y_{p_i} . We do this by multiplying the whole function y_{p_i} by a factor of x^n , where n is the smallest positive integer such that our new y_{p_i} has no like terms in common with y_c .

Once we have the correct format for y_{p_i} , we start the substitution process and complete finding our particular solution.

Remark: In practice, we can multiply by x. If the new y_{p_i} still has a like term in common with y_c , multiply by x again. Continue to multiply by x until there are no common like terms left. That is, we don't have to know what n is up front.