Partial Fraction Basics

We wish to decompose a proper rational function. To be proper means that the numerator has a degree that is stricly smaller than the denominator degree.

Factor types: There is a theorem in Algebra that says that every polynomial with real coefficients can be factored as a product of linear and irreducible quadratic factors ${ }^{1}$. So you can only have two kinds of factors:

1. Linear factors such as $(s+1)$, or $(s-3)$, or in general $(s-a)$, and
2. Irreducible ${ }^{2}$ Quadratic factors such ${ }^{3}$ as $\left(s^{2}+4\right)$, or $\left(s^{2}+2 s+2\right)$, or more generally $\left(s^{2}+b s+c\right)$ with $b^{2}-4 c<0$.

Repeating vs Nonrepeating: A factor is referred to as repeating if it appears more than once in the factored polynomial. In other words, it's repeating if it has a power greater than 1 on it. For example, consider

$$
\frac{s^{2}+3 s+3}{(s-1)(s+2)^{3}\left(s^{2}+1\right)\left(s^{2}+2 s+3\right)^{5}}
$$

There are four factors in the denominator. We can characterize each one.

- ($s-1$) is linear and it is not repeating (a.k.a. nonrepeating),
- $(s+2)$ is linear and it is repeating (since it's raised to the power 3),
- $\left(s^{2}+1\right)$ is irreducible quadratic and it is nonrepeating,
- $\left(s^{2}+2 s+3\right)$ is irreducible quadratic and it is repeating (due to the power of 5).

Proper Set Up of Decomposition: There is a general rule for how to set up the terms in your decomp based on which type of factor you have.

1. Linear factors get a contant numerator. For example $\frac{A}{s+1}$ or $\frac{B}{s-3}$
2. Irreducible Quadratic factors get a line as the numerator. For example $\frac{A s+B}{s^{2}+4}$ or $\frac{C s+D}{s^{2}+2 s+2}$

[^0]3. Repeated Linear: The decomposition will have as many terms as the power on the repeated factor. There is one term for each power. All terms have a constant numerator. For example if $(s+2)^{3}$ is a repeated factor, the decomposition will include
$$
\frac{A}{s+2}+\frac{B}{(s+2)^{2}}+\frac{C}{(s+2)^{3}}
$$
4. Repeated Quadratic: The same principle holds as with repeated linear except that each numberator is a line. For example, if $\left(s^{2}+2 s+3\right)^{5}$ is a factor, then the decomposition will have five terms
$$
\frac{A s+B}{s^{2}+2 s+3}+\frac{C s+D}{\left(s^{2}+2 s+3\right)^{2}}+\frac{E s+F}{\left(s^{2}+2 s+3\right)^{3}}+\frac{G s+H}{\left(s^{2}+2 s+3\right)^{4}}+\frac{J s+K}{\left(s^{2}+2 s+3\right)^{5}}
$$

Example: Here is an example of the correct format for a partial fraction decomposition.

$$
\begin{aligned}
& \frac{s^{2}+3 s+3}{(s-1)(s+2)^{3}\left(s^{2}+1\right)\left(s^{2}+2 s+3\right)^{5}}= \\
& \frac{A}{s-1}+\frac{B}{s+2}+\frac{C}{(s+2)^{2}}+\frac{D}{(s+2)^{3}}+\frac{E s+F}{s^{2}+1}+\frac{G s+H}{s^{2}+2 s+3}+ \\
& \frac{J s+K}{\left(s^{2}+2 s+3\right)^{2}}+\frac{L s+M}{\left(s^{2}+2 s+3\right)^{3}}+\frac{N s+P}{\left(s^{2}+2 s+3\right)^{4}}+\frac{Q s+R}{\left(s^{2}+2 s+3\right)^{5}}
\end{aligned}
$$

Exercises: Determine what the partial fraction decomposition ${ }^{4}$ should look like (i.e. write out the format). Some of these will require factoring first. Answers on the next page.

1. $\frac{s+2}{(s-1)(s+3)(s-4)}$
2. $\frac{6}{\left(s^{2}+5\right)(s-1)^{3}}$
3. $\frac{s^{2}-2}{s^{3}\left(s^{2}+s+1\right)^{2}}$
4. $\frac{4}{s^{2}-3 s-4}$
5. $\frac{s+3}{\left(s^{2}-1\right)^{2}\left(s^{2}+4\right)^{2}}$
6. $\frac{2}{s^{3}-s^{2}}$
7. $\frac{s^{2}+1}{s^{2}-1}$
[^1]
Exercise Solutions:

1. $\frac{s+2}{(s-1)(s+3)(s-4)}=\frac{A}{s+2}+\frac{B}{s-1}+\frac{C}{s-4}$
2. $\frac{6}{\left(s^{2}+5\right)(s-1)^{3}}=\frac{A s+B}{s^{2}+5}+\frac{C}{s-1}+\frac{D}{(s-1)^{2}}+\frac{E}{(s-1)^{3}}$
3. $\frac{s^{2}-2}{s^{3}\left(s^{2}+s+1\right)^{2}}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s^{3}}+\frac{D s+E}{s^{2}+s+1}+\frac{F s+G}{\left(s^{2}+s+1\right)^{2}}$
4. $\frac{4}{s^{2}-3 s-4}=\frac{A}{s+1}+\frac{B}{s-4}$
5. $\frac{s+3}{\left(s^{2}-1\right)^{2}\left(s^{2}+4\right)^{2}}=\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{s+1}+\frac{D}{(s+1)^{2}}+\frac{E s+F}{s^{2}+4}+\frac{G s+H}{\left(s^{2}+4\right)^{2}}$
6. $\frac{2}{s^{3}-s^{2}}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-1}$
7. $\frac{s^{2}+1}{s^{2}-1}$ This is a trick question! The rational function is NOT proper. We can write it as

$$
\frac{s^{2}+1}{s^{2}-1}=1+\frac{2}{s^{2}-1}=1+\frac{A}{s-1}+\frac{B}{s+1}
$$

Notes:
4. $s^{2}-3 s-4=(s+1)(s-4)$
5. $\left(s^{2}-1\right)^{2}\left(s^{2}+4\right)^{2}=[(s-1)(s+1)]^{2}\left(s^{2}+4\right)^{2}=(s-1)^{2}(s+1)^{2}\left(s^{2}+4\right)^{2}$
6. $s^{3}-s^{2}=s^{2}(s-1)$
7. $s^{2}+1=\left(s^{2}-1\right)+2 \Longrightarrow \frac{s^{2}+1}{s^{2}-1}=\frac{s^{2}-1+2}{s^{2}-1}=\frac{s^{2}-1}{s^{2}-1}+\frac{2}{s^{2}-1}=1+\frac{2}{s^{2}-1}=1+\frac{2}{(s-1)(s+1)}$

This can also be accomplished by performing long division

$$
s ^ { 2 } - 1 \longdiv { s ^ { 2 } + 1 }
$$

[^0]: ${ }^{1}$ Knowing it can be done, and actually being able to do it, are not the same thing. Factoring might be quite difficult in practice.
 ${ }^{2}$ Irreducible means that it can't be factored as a product of linear factors without introducing complex numbers.
 ${ }^{3}$ More generally, a linear factor can look like $(a s+b)$, and a quadratic can look like $\left(a s^{2}+b s+c\right)$.

[^1]: ${ }^{4}$ One of these is a trick question.

