MATH 1190 Calculus I

Section 4.2

Overview

- Extreme Values
- Absolute Extrema
- Extreme Value Theorem (EVT)
- Local Extrema
- Critical Values
- Closed Interval Method

Announcements \& Questions

Extreme Values

- One of the most important applications of the derivative is its use as a tool to find the minimum or maximum values of a function.
- We can find extreme values (or extrema) of f over the entire domain (global) or over a particular interval I (local).
- There can be a unique optimal value, more than one, or none at all.
*Note on language:
The singular forms are minimum, maximum, and extremum.
The plural forms are minima, maxima, and extrema.

Absolute Extrema

Let f be a function on an interval I and let $a \in I$. We say that $f(a)$ is the

- absolute minimum of f on I if $f(a) \leq f(x)$ for all $x \in I$.
- absolute maximum of f on I if $f(a) \geq f(x)$ for all $x \in I$.

The extreme values occur at the x-values, but the extrema are the corresponding y-values.

- Does every function have absolute extrema? Consider $y=x$ or $y=\frac{1}{x}$.

Extreme Value Theorem (EVT)

Theorem: Existence of Extrema on a Closed Interval

A continuous function f on a closed (bounded) interval $I=[a, b]$ takes on both an absolute maximum M and absolute minimum m on I.

What can go wrong?

- Discontinuity (A)
- Open Interval (B)

(A) Discontinuous function with no max on $[a, b]$, and a \min at $x=a$.

(B) Continuous function with no min or max on the open interval (a, b).

(C) Every continuous function on a closed interval $[a, b]$ has both a min and a \max on $[a, b]$.

Local Extrema

We say that $f(c)$ is a

- local minimum occurring at $x=c$ if $f(c)$ is the minimum value of f on some open interval containing c.
- local maximum occurring at $x=c$ if $f(c)$ is the maximum value of f on some open interval containing c.

That is, $f(c)$ is a local extrema if it is greater (or smaller) than all other nearby values.

(B)

Example 0

How to identify and classify all extreme values of f.

Figure 4.5
How to identify types of maxima and minima for a function with domain $a \leq x \leq b$.

Example 1

Identify and classify all extreme values of f.

Critical Numbers

- How do we find the local extrema?
- A number c is called a critical number of f if c is in the domain of f and
i. $\quad f^{\prime}(c)=0$, or
ii. $\quad f^{\prime}(c)$ does not exist.
*Not all critical numbers will give us a local extremum (we have to check), but local extrema cannot occur anywhere else!

Concept Check

True or False:

Every critical number leads to a local extrema.

Example 2

Find the critical numbers of $f(x)=x^{3}-9 x^{2}+24 x-10$.

Example 3

Find the critical numbers of $f(x)=|x|$.

Example 4

Find the critical numbers of $f(x)=x^{2}-32 \sqrt{x}$.

Fermat's Theorem

Theorem: Fermat's Theorem on Local Extrema

If $f(c)$ is a local min or max, then c is a critical number of f.

Proof: Suppose that $f(c)$ is a local minimum (the case of a local maximum is similar). If $f^{\prime}(c)$ does not exist, then c is a critical point and there is nothing more to prove. So, assume $f^{\prime}(c)$ exists. We must then prove that $f^{\prime}(c)=0$.
Because $f(c)$ is a local minimum, we have $f(c+h) \geq f(c)$ for all sufficiently small $h \neq 0$.
Equivalently, $f(c+h)-f(c) \geq 0$. Now divide this inequality by h. If $h>0$, then $\frac{f(c+h)-f(c)}{h} \geq 0$; if $h<0$, then $\frac{f(c+h)-f(c)}{h} \leq 0$. Thus, $f^{\prime}(c)=0$ by the Squeeze Theorem.

Fermat's Theorem (2)

- CAUTION: The converse does not hold. That is, if $x=c$ is a critical number of f, then $f(c)$ is not necessarily a local max or min.
- Consider $y=x^{3}$.

Extreme Values on a Closed Interval

- The combination of the Extreme Value Theorem and Fermat's Theorem tells us exactly where to find absolute extrema over a closed interval.

Theorem: Extreme Values on a Closed Interval

Assume that f is continuous on $[a, b]$ and let $f(c)$ be the minimum or maximum of f on $[a, b]$. Then c is a critical number or one of the endpoints a or b.

Closed Interval Method

Finding the Absolute Extrema for a Continuous Function f on a Finite Closed Interval [a, b]:

1. Find all critical values c of f on the interval $[a, b]$.
2. Evaluate f for all critical numbers c and the endpoints, a and b.
3. Make a conclusion: the absolute minimum is the smallest of these y-values, and the absolute maximum is the largest of these y-values.

Example 5

Find the absolute extrema $f(x)=2 x^{3}-15 x^{2}+24 x+7$ over $[0,6]$.

Example 6

Find the absolute extrema $g(x)=\sqrt{4-x^{2}}$ over $[-1,2]$.

Solo Practice 4.2

Find the absolute extrema of $f(x)=1-(x-1)^{2 / 3}$ over $[-1,2]$.

