MATH 1190 Calculus I

Section 4.3

Overview

- Curve Sketching Guidelines
- Monotonic Functions
- The Sign of the Derivative
- First Derivative Test

Announcements \& Questions

Curve Sketching Guidelines

- Identify the domain of the function f.
- Find y^{\prime} and $y^{\prime \prime}$.
- Identify where the extrema might occur (i.e., find critical numbers).
- Find the intervals where f is increasing and decreasing.
- Find any local min and max value(s).
- Find the intervals where f is concave up and concave down.
- Find any point(s) of inflection.
- Plot some specific points (such as the local max/min, inflection points, and intercepts).
- Sketch the general shape using all of the above.

Monotonic Functions

- We say that f is monotone if it is increasing (or decreasing) over its entire domain.
- Ex. $y=x^{3}$ (monotone increasing)
- Ex. $y=-x^{3}$ (monotone decreasing)
- We say that f is monotonic on $(\boldsymbol{a}, \boldsymbol{b})$ if it is either increasing or decreasing on (a, b).

The Sign of the Derivative

- Another corollary of the Mean Value Theorem applies to functions that are monotonic on some interval.
- Theorem: The Sign of the Derivative Let f be continuous on $[a, b]$ and differentiable on (a, b).
- If $f^{\prime}(x)>0$ for $x \in(a, b)$, then f is increasing on (a, b).
- If $f^{\prime}(x)<0$ for $x \in(a, b)$, then f is decreasing on (a, b).
*This notion can be extended to open intervals and infinite intervals!

Example 0

a) To see that $f(x)=\ln x$ is increasing, observe that the derivative $f^{\prime}(x)=\frac{1}{x}$ is positive on the domain $x>0$.

b) To find the intervals on which $f(x)=x^{2}-2 x-3$ is monotonic, observe that the derivative $f^{\prime}(x)=2 x-2=2(x-1)$ is positive for $x>1$ and negative for $x<1$.

Thus, f is increasing on $(1, \infty)$ and decreasing on $(-\infty, 1)$.

First Derivative Test

Theorem: First Derivative Test for Critical Points

Let c be a critical number of f.

- If $f^{\prime}(x)$ changes sign from + to - at c, then $f(c)$ is a local maximum.
- If $f^{\prime}(x)$ changes sign from - to + at c, then $f(c)$ is a local minimum.

Note 1: If f^{\prime} does not change sign at c, then $f(c)$ is not an extremum.
Note 2: As long as f is continuous, then f^{\prime} cannot change sign between consecutive critical numbers. That is, critical numbers subdivide the domain of f into monotonic subintervals.

How to find local extrema of a function

1. Find the critical numbers c of f.

- These subdivide the domain of f into monotonic subintervals.

2. Determine the Sign of the Derivative (between the critical numbers).

- The sign of f^{\prime} on each subinterval is the same for every x inside the subinterval, so pick a convenient test point x_{0} and find the sign of $f^{\prime}\left(x_{0}\right)$.

3. Determine the local extrema using the First Derivative Test.

- The sign of f^{\prime} must change sign at c for an extremum $f(c)$ to exist.

Example 1

Find the local extrema of $f(x)=x^{4}-2 x^{3}$.

Example 2

Find the local extrema of $g(x)=(2-\sqrt{x})^{2}$.

Example 3

Find the local extrema of $f(x)=x^{1 / 3}(x+8)$.

Solo Practice 4.3

Find the local extrema of $g(x)=2 x^{3}-6 x$.

