

MATH 1190 Calculus I

Section 4.3

Overview

- Curve Sketching Guidelines
- Monotonic Functions
- The Sign of the Derivative
- First Derivative Test

Curve Sketching Guidelines

- Identify the domain of the function f.
- Find y' and y''.
- Identify where the extrema might occur (i.e., find critical numbers).
- Find the intervals where *f* is increasing and decreasing.
- Find any local min and max value(s).
- Find the intervals where *f* is concave up and concave down.
- Find any point(s) of inflection.
- Plot some specific points (such as the local max/min, inflection points, and intercepts).
- Sketch the general shape using all of the above.

Monotonic Functions

- We say that *f* is **monotone** if it is increasing (or decreasing) over its *entire domain*.
 - Ex. $y = x^3$ (monotone increasing)
 - Ex. $y = -x^3$ (monotone decreasing)
- We say that *f* is **monotonic on** (*a*, *b*) if it is either increasing or decreasing on (*a*, *b*).

The Sign of the Derivative

- Another corollary of the Mean Value Theorem applies to functions that are monotonic on some interval.
- **Theorem:** The Sign of the Derivative Let *f* be continuous on [*a*, *b*] and differentiable on (*a*, *b*).
 - If f'(x) > 0 for $x \in (a, b)$, then f is increasing on (a, b).
 - If f'(x) < 0 for $x \in (a, b)$, then f is decreasing on (a, b).

*This notion can be extended to open intervals and infinite intervals!

a) To see that $f(x) = \ln x$ is increasing, observe that the derivative $f'(x) = \frac{1}{x}$ is positive on the domain x > 0.

b) To find the intervals on which $f(x) = x^2 - 2x - 3$ is monotonic, observe that the derivative f'(x) = 2x - 2 = 2(x - 1) is positive for x > 1 and negative for x < 1.

Thus, *f* is increasing on $(1, \infty)$ and decreasing on $(-\infty, 1)$.

First Derivative Test

Theorem: First Derivative Test for Critical Points Let c be a critical number of f.

- If f'(x) changes sign from + to at c, then f(c) is a local maximum.
- If f'(x) changes sign from to + at c, then f(c) is a local minimum.

Note 1: If f' does not change sign at c, then f(c) is not an extremum.

Note 2: As long as f is continuous, then f' cannot change sign between consecutive critical numbers. That is, critical numbers subdivide the domain of f into monotonic subintervals.

How to find local extrema of a function

- 1. Find the critical numbers c of f.
 - These subdivide the domain of f into monotonic subintervals.
- 2. Determine the Sign of the Derivative (between the critical numbers).
 - The sign of f' on each subinterval is the same for every x inside the subinterval, so pick a convenient test point x_0 and find the sign of $f'(x_0)$.
- 3. Determine the local extrema using the First Derivative Test.
 - The sign of f' must change sign at c for an extremum f(c) to exist.

Find the local extrema of $f(x) = x^4 - 2x^3$.

Find the local extrema of $g(x) = (2 - \sqrt{x})^2$.

Find the local extrema of $f(x) = x^{1/3}(x+8)$.

Solo Practice 4.3

Find the local extrema of $g(x) = 2x^3 - 6x$.