MATH 1190 Calculus I

Section 4.4

Overview

- Curve Sketching Guidelines
- Concavity
- Test for Concavity
- Second Derivative Test

Announcements \& Questions

Curve Sketching Guidelines

- Identify the domain of the function f.
- Find y^{\prime} and $y^{\prime \prime}$.
- Identify where the extrema might occur (i.e., find critical numbers).
- Find the intervals where f is increasing and decreasing.
- Find any local min and max value(s).
- Find the intervals where f is concave up and concave down.
- Find any point(s) of inflection.
- Plot some specific points (such as the local max/min, inflection points, and intercepts).
- Sketch the general shape using all of the above.

Concavity

Concavity refers to how the graph "bends". More precisely, it is defined by the interaction of f with its tangents.

Let f be a differentiable function on an open interval $I=(a, b)$. Then

- f is concave up on I if f lies above all its tangents on I (that is, f^{\prime} is increasing on I).
- f is concave down on I if f lies below all its tangents on I (that is, f^{\prime} is decreasing on I).

How do monotonicity and concavity interact?

Example 0

The stocks of two companies, Al and BBA, went up in value, and both currently sell for $\$ 75$. However, one is clearly a better investment than the other, assuming these trends continue.

- The graph of Stock Al is concave down, so its growth rate is declining.
- The graph of Stock BBA is concave up, so its growth rate is increasing.

Company AI

Company BBA

Test for Concavity

Theorem: Test for Concavity

Assume that $f^{\prime \prime}(x)$ exists for all $x \in(a, b)$.

- If $f^{\prime \prime}(x)>0$ on (a, b), then f is concave up on (a, b).
- If $f^{\prime \prime}(x)<0$ on (a, b), then f is concave down on (a, b).

A point $P(c, f(c))$ is called a point of inflection (or inflection point) if the graph of f changes in concavity at $x=c$.

- The concavity of f is determined by the sign of $f^{\prime \prime}(x)$, so an inflection point is a point where $f^{\prime \prime}(x)$ changes sign.
- Graphically, inflection points occur where f^{\prime} has a local min or max.

How to find the inflection points of a function

Theorem: Test for Inflection Points
If $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist (i.e., second-order critical numbers), and $f^{\prime \prime}(x)$ changes sign at $x=c$, then f has a point of inflection at $x=c$.

1. Find where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ DNE.

- Points of inflections can only occur at second-order critical numbers.

2. Determine the sign of the second derivative (on each subinterval).

- Pick a convenient test point x_{0} and find the sign of $f^{\prime \prime}\left(x_{0}\right)$.

3. Last, determine the inflection points Test for Inflection Points.

- The sign of $f^{\prime \prime}$ must change sign at c.

Example 1

Find the inflection point(s) of $f(x)=3 x^{5}-5 x^{4}+1$.

Example 2

Find the inflection point(s) of $f(x)=\cos x$ on $[0,2 \pi]$.

Example 3

Find the inflection point(s) of $f(x)=x^{5 / 3}$.

How to use the curve sketching guidelines

1. Investigate the monotonicity of f :

- Find $f^{\prime}(x)$, critical numbers, and intervals of increase and decrease.
- Determine the local extrema using the First Derivative Test.

2. Investigate the concavity of f :

- Find $f^{\prime \prime}(x)$, second-order critical numbers, and intervals of concavity.
- Determine the points of inflection using the Test for Inflection Points.

3. Plot local extrema and inflection points, if they exist. Use actual y-values.
4. Use the monotonicity to sketch the basic shape.
5. Use the concavity to finesse the curve.

Example 4

Sketch the curve $f(x)=2 x^{3}-6 x$.

Example 5

Sketch the curve $f(x)=x e^{x}$.

Example 6

Sketch the curve $f(x)=\frac{4}{3} x-\tan x$ over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solo Practice 4.4

Sketch the curve $f(x)=\sqrt[3]{x^{2}-2 x-3}$.

Second Derivative Test (for local extrema)

There is a simple test for critical points based on concavity.

Theorem: Second Derivative Test
Let c be a critical point of f. If $f^{\prime \prime}(c)$ exists, then

- if $f^{\prime \prime}(c)>0$, then $f(c)$ is a local minimum.
- if $f^{\prime \prime}(c)<0$, then $f(c)$ is a local maximum.
- if $f^{\prime \prime}(c)=0$, then f may have a local min, local max, or neither. (The test is inconclusive.)

Example 7

Analyze the critical points of $f(x)=\left(2 x-x^{2}\right) e^{x}$.

Example 8

Analyze the critical points of $f(x)=x^{5}-5 x^{4}$.

