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Section 5: First Order Equations: Models and Applications

We are considering another population model, one that accounts for
environmental limitations on a population.

Logistic Growth Model

The equation
dP
dt

= kP(M − P), where k ,M > 0 is called a logistic
growth equation.

Suppose the intial population P(0) = P0. Solve the resulting initial value
problem. Show that if P0 > 0, the population tends to the carrying capacity M.



Logistic Growth: P ′(t) = kP(M − P) P(0) = P0
We recognized the equation as being both separable and Bernoulli.
We solved it as a Bernoulli equation and obtained the one-parameter
family of solutions

P(t) =
M

1 + Ae−kMt .

We need to apply the initial condition.





Logistic Modeling

Figure: Poster of recent Birla Carbon scholar



Logistic Modeling

Figure: The species equations include an extended logistic term with
threshold and competition.



Long Time Solution of Logistic Equation

dP
dt

= kP(M − P) = −kP2 + kMP.

Figure: Plot of P versus dP
dt . Note that dP

dt > 0 if 0 < P < M and dP
dt < 0 if

P > M.



Logistic Growth with Breeding Threshhold

Suppose we modify the logistic equation based on the assumption that
the fish will only breed successfully if the population is above some
minimum threshhold N where 0 < N < M. The new model is

dP
dt

= kP(M − P)(P − N),

which is separable. But it is practically impossible to obtain an explicit
solution, P(t) = “some function of t .”

Remark: Even without solving the equation, we can use the equation
to predict the long time solution based on the initial population.

Solutions are given implicitly by
(M − P)N

PM−N(P − N)M
= Ae−kMN(M−N)t .



Expected Long Time Solutions

dP
dt

= kP(M − P)(P − N),

Figure: Plot of P versus dP
dt for the modified model.



Expected Long Time Solutions

Use the given plot of F (P) = kP(M − P)(P − N) to determine the long

time solution of
dP
dt

= F (P) if (a) 0 < P(0) < N, (b) N < P(0) < M or
(c) P(0) > M.



Qualitative Analysis

Autonomous Equation

The differential equation
dy
dt

= f (t , y(t)) is called autonomous
if the right hand side does not depend explicitly on t—i.e., an
autonomous equation has the form

dy
dt

= F (y).



Equilibrium Solutions

Equilibrium Solutions

If y0 is a value such that F (y0) = 0, then the constant function
y(t) = y0 is called an equilibrium solution (or equilibrium point)

of the autonomous differential equation
dy
dt

= F (y).

Note: If y(0) = y0 and y0 is an equilibrium solution, then y(t) = y0 is a
constant solution.

Question: What if y(0) is not an equilibrium value, but is close to an
equilibrium value? What can we expect from the solution?



Stability of Equilibrium Solutions

In general, we may classify an equilibrium solution of a given
autononous ODE as being

▶ unstable: solutions close, but not exact, will tend away from the
equilibrium value,

▶ stable: solutions close, but not exact, will tend towards the
equilibrium value1, or

▶ semi-stable: solutions close, but not exact, may tend towards or
away from the equilibrium value depending on whether the
solution is greater than or less than the equilibrium value.

Note: There are more detailed notions of stability, so there’s more to
the story. But we’ll consider the above definitions here.

1
This is more accurately referred to as asymptotically stable



Determining Stability of an Equilibrium Solution

To determine the nature of an equilibrium solution y0 for an ODE
y ′ = F (y), we can analyze the sign of F in the neighborhood of y0.
Suppose F is continuous on an open interval about y0.

▶ If F changes sign from positive (+) to negative (-) as y passes
through y0 (from left to right), then y0 is a stable equilibrium.

▶ If F changes signs from negative (-) to positive (+) as y passes
through y0, then then y0 is an unstable equilibrium.

▶ If F doesn’t change signs, then y0 is semi-stable.

If this reminds you of a derivative test, there’s a good reason for that.
Fortunately, it’s easy to visualize the cases if you can obtain even a crude
drawing of the graph of F .



Example

Consider the IVP

y ′ = 2(y + 1)(2 − y)2(y − 3), y(0) = k .

Determine the long time behavior, lim
t→∞

y(t), if

(a) k = −2, (b) k = 0, (c) k = 1,
(d) k = 2, (e) k = 2.5, (f) k = 4.

The ODE is autonomous and F (y) = 2(y + 1)(2 − y)2(y − 3) is a
fourth degree polynomial with three roots at y0,1 = −1, y0,2 = 2 and
y0,3 = 3. So these are the equilibrium values. It’s not really necessary
to plot F because we can simply determine the sign in each of the
intervals (−∞,−1), (−1,2), (2,3), and (3,∞), and infer the nature of
each equilibrium.



(a) k = −2, (b) k = 0, (c) k = 1,
(d) k = 2, (e) k = 2.5, (f) k = 4.





Models Derived in this Section
We have several models involving first order ODEs.

Exponential Growth/Decay
1
1

dP
dt

= kP
1
1

RC-Series Circuit
1
1

R
dq
dt

+
1
C

q = E(t)
1
1

LR-Series Circuit
1
1

L
di
dt

+ Ri = E(t)
1
1

Classical Mixing
1
1

dA
dt

= ri · ci − ro
A(t)

V (0) + (ri − ro)t
1
1

Logistic Growth
1
1

dP
dt

= kP(M − P)
1
1


