#### September 11 Math 2306 sec. 51 Fall 2024

#### Section 5: First Order Equations: Models and Applications

We are considering another population model, one that accounts for environmental limitations on a population.

#### **Logistic Growth Model**

The equation  $\frac{dP}{dt} = kP(M-P)$ , where k, M > 0 is called a **logistic** growth equation.

Suppose the intial population  $P(0) = P_0$ . Solve the resulting initial value problem. Show that if  $P_0 > 0$ , the population tends to the carrying capacity M.

# Logistic Growth: $P'(t) = kP(M - P) P(0) = P_0$

We recognized the equation as being both separable and Bernoulli. We solved it as a Bernoulli equation and obtained the one-parameter family of solutions

$$P(t) = \frac{M}{1 + Ae^{-kMt}}.$$

We need to apply the initial condition.

$$P(o) = \frac{M}{1+A} e^{o} = \frac{M}{1+A} = P_{o}$$

$$\Rightarrow M = (1+A)P_{o} = P_{o} + P_{o}A$$

$$P_{o}A = M - P_{o} \Rightarrow A = \frac{M - P_{o}}{P_{o}}$$

$$P(t) = \frac{M}{1 + (\frac{M - P_{o}}{P_{o}}) e^{-kMt}}$$

$$P(k) = \frac{M}{P_0 + (M - P_0)} e^{-kmt} \left(\frac{P_0}{P_0}\right)$$

If 
$$P_0 > 0$$
,

$$\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \frac{MP_0}{P_0 + (M - P_0)} = \lim_{t \to \infty} \frac{MP_0}{P_0} = M$$

 $P \rightarrow N$  as  $\ell \rightarrow \infty$ .

### **Logistic Modeling**



Figure: Poster of recent Birla Carbon scholar

## **Logistic Modeling**



Figure: The species equations include an extended logistic term with threshold and competition.

## Long Time Solution of Logistic Equation

$$\frac{dP}{dt} = kP(M-P) = -kP^2 + kMP.$$



Figure: Plot of *P* versus  $\frac{dP}{dt}$ . Note that  $\frac{dP}{dt} > 0$  if 0 < P < M and  $\frac{dP}{dt} < 0$  if P > M.

## Logistic Growth with Breeding Threshhold

Suppose we modify the logistic equation based on the assumption that the fish will only breed successfully if the population is above some minimum threshhold N where 0 < N < M. The new model is

$$\frac{dP}{dt} = kP(M-P)(P-N),$$

which is separable. But it is practically impossible to obtain an explicit solution, P(t) = "some function of t."

**Remark:** Even without solving the equation, we can use the equation to predict the long time solution based on the initial population.

Solutions are given implicitly by 
$$\frac{(M-P)^N}{P^{M-N}(P-N)^M} = Ae^{-kMN(M-N)t}$$
.

#### **Expected Long Time Solutions**

$$\frac{dP}{dt} = kP(M-P)(P-N),$$



Figure: Plot of *P* versus  $\frac{dP}{dt}$  for the modified model.

## **Expected Long Time Solutions**

Use the given plot of F(P) = kP(M - P)(P - N) to determine the long time solution of  $\frac{dP}{dt} = F(P)$  if (a) 0 < P(0) < N, (b) N < P(0) < M or (c) P(0) > M.

#### **Qualitative Analysis**

#### **Autonomous Equation**

The differential equation  $\frac{dy}{dt} = f(t, y(t))$  is called **autonomous** if the right hand side does not depend explicitly on t—i.e., an autonomous equation has the form

$$\frac{dy}{dt} = F(y).$$

$$\frac{dy}{dt} = y(z-5)(y+3) \quad \text{autonomous}$$

### **Equilibrium Solutions**

#### **Equilibrium Solutions**

If  $y_0$  is a value such that  $F(y_0) = 0$ , then the constant function  $y(t) = y_0$  is called an **equilibrium** solution (or equilibrium point) of the autonomous differential equation  $\frac{dy}{dt} = F(y)$ .

**Note:** If  $y(0) = y_0$  and  $y_0$  is an equilibrium solution, then  $y(t) = y_0$  is a constant solution.

**Question:** What if y(0) is not an equilibrium value, but is close to an equilibrium value? What can we expect from the solution?

### Stability of Equilibrium Solutions

In general, we may classify an equilibrium solution of a given autononous ODE as being

- unstable: solutions close, but not exact, will tend away from the equilibrium value,
- stable: solutions close, but not exact, will tend towards the equilibrium value<sup>1</sup>, or
- semi-stable: solutions close, but not exact, may tend towards or away from the equilibrium value depending on whether the solution is greater than or less than the equilibrium value.

**Note:** There are more detailed notions of stability, so there's more to the story. But we'll consider the above definitions here.

<sup>&</sup>lt;sup>1</sup> This is more accurately referred to as asymptotically stable

### Determining Stability of an Equilibrium Solution

To determine the nature of an equilibrium solution  $y_0$  for an ODE y' = F(y), we can analyze the sign of F in the neighborhood of  $y_0$ . Suppose F is continuous on an open interval about  $y_0$ .

- ▶ If F changes sign from positive (+) to negative (-) as y passes through  $y_0$  (from left to right), then  $y_0$  is a stable equilibrium.
- ▶ If F changes signs from negative (-) to positive (+) as y passes through  $y_0$ , then then  $y_0$  is an unstable equilibrium.
- ▶ If F doesn't change signs, then  $y_0$  is semi-stable.

If this reminds you of a *derivative test*, there's a good reason for that. Fortunately, it's easy to visualize the cases if you can obtain even a crude drawing of the graph of F.

### Example

#### Consider the IVP

$$y' = 2(y+1)(2-y)^2(y-3), y(0) = k.$$

Determine the long time behavior,  $\lim_{t\to\infty}y(t)$ , if

(a) 
$$k = -2$$
, (b)  $k = 0$ , (c)  $k = 1$ , (d)  $k = 2$ , (e)  $k = 2.5$ , (f)  $k = 4$ .

$$(b) \quad k=0,$$

$$(c) \quad k=1,$$

(d) 
$$k = 2$$
,

(e) 
$$k = 2.5$$
,

(f) 
$$k = 4$$
.

$$F(y) = 2y' + \dots$$

(a) 
$$k = -2$$
, (b)  $k = 0$ , (c)  $k = 1$ , (d)  $k = 2$ , (e)  $k = 2.5$ , (f)  $k = 4$ .

cl) 
$$y(0) = 2$$
  $\lim_{t \to \infty} y(t) = 2$   $y(t) = 2$ 

, lin y(t) = Z e) y(0)=2.5

ling y(t) = 00 f) y(0) - 4

#### Models Derived in this Section

We have several models involving first order ODEs.

Exponential Growth/Decay

$$\frac{dP}{dt} = kP$$

**RC-Series Circuit** 

$$R\frac{dq}{dt} + \frac{1}{C}q = E(t)$$

**LR-Series Circuit** 

$$L\frac{di}{dt} + Ri = E(t)$$

**Classical Mixing** 

$$\frac{dA}{dt} = r_i \cdot c_i - r_o \frac{A(t)}{V(0) + (r_i - r_o)t}$$

**Logistic Growth** 

$$\frac{dP}{dt} = kP(M-P)$$