September 12 Math 3260 sec. 53 Fall 2025

Chapter 2 Systems of Linear Equations

ainxi + apxe + + anxn = b

aci Xy + axXe + + anXn = b
. + . =+ =+ . = .

amxt + amXxe + + amXn = bnm

2.2.1 Gaussian Elimination

We're interested in solving such a system using Gaussian elimination. Recall
that this involved three operations that result in an equivalent system:
> Multiply an equation by a nonzero scalar k. kE; — E; (scale)
» Interchange the position of any two equations. E; <+ E; (swap)
» Replace an equation with the sum of itself and a multiple of any other
equation. KE; + E; — E; (replace)
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Other Solution Cases

An example of the no solution case: The system

—

Xy + 4x + 3x3

2xX1 +  Xo — X3 = 2
Xy 4+ 3xo + 4x3 = O
leads to
Xy + 4 + 3x3 = 1
X + x3 = 0
0 =1

Inconsistent systems always give rise to an equation that is false.

0 = something nonzero
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2.3 Matrices

A matrix (plural matrices) is a rectangular array of numbers of
the form

ayy a2 - Aip
a1 do -+ Aop
am ame2 -+ amn

Each number, aj, is called an entry or an element of the matrix.
If the matrix has m rows and n columns, we say that the size or
dimension of the matrix is “m by n” and write m x n.

aj

S N

row index column-index
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Coefficient & Augmented Matrices

Given a system of linear equations with m equations and n variables,

anXy + anpXe + -+ + apXn = by
aXy + apXe + -0 + apXn = b
. . . . 9y
: + : + -+ : =
amXxi + amXe + -+ + ampXn = bm

the coefficient matrix for the system is the m x n matrix

ayn a2 - din
dx1 dazxp -+ dop
am @&@mz2 -+ dmn
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Coefficient & Augmented Matrices

Given a system of linear equations with m equations and n variables,

anXxy + apXe + - + ampXs = by
aXy + apXe + -0 + apXn = b
. . . . )
: + : + .+ : =
amxi + amXe + -+ + ampXn = bm

the augmented matrix for the system is the m x n+ 1 matrix

a1 &2 -+ an| b
a1 ap -+ an| b
am am2 -+ amn|bm
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Example

Write the coefficient and augmented matrices for each system.

2Xq + X2 — 3x3 + x4 = -3
—X1 + 3% + 4x3 — 2x4 = 8
The ok malg Zx ™
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Example

Write the coefficient and augmented matrices for each system.

Xy — 2X% + x3 = 0
4+ 3 — 2x3 = 0
xXt + X — x3 =0
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Elementary Row Operations

We will use matrices to perform elimination without involving the
symbols and variable names. We have three operations we can
perform on a matrix. We’'ll use the notation

R;

to refer to the it row of the matrix.

Elementary Row Operations

» Multiply row i/ by any nonzero constant k (scale), kR; — R;.
> Interchange row i and row j (swap), R; <> R;.

» Replace row j with the sum of itself and k times row i
(replace), kR; + R; — R;.
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