September 12 Math 3260 sec. 53 Fall 2025

Chapter 2 Systems of Linear Equations

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 $\vdots + \vdots + \vdots + \vdots + \vdots = \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

2.2.1 Gaussian Elimination

We're interested in solving such a system using **Gaussian** elimination. Recall that this involved three operations that result in an equivalent system:

- ▶ Multiply an equation by a nonzero scalar k. $kE_i \rightarrow E_i$ (scale)
- ▶ Interchange the position of any two equations. $E_i \leftrightarrow E_j$ (swap)
- ▶ Replace an equation with the sum of itself and a multiple of any other equation. $kE_i + E_j \rightarrow E_j$ (replace)

Example

$$x_1 - x_2 - 5x_3 = 6$$

 $3x_1 + x_2 - 7x_3 = 10$
 $2x_1 - x_2 - 8x_3 = 10$

$$x_1 - x_2 - 5x_3 = 6$$

 $4x_2 + 8x_3 = -8$
 $x_2 + 2x_3 = -2$

$$-3X_{1} + 3X_{2} + 15X_{3} = -18$$

 $3X_{1} + X_{2} - 7X_{3} = 10$
 $-2X_{1} + 2X_{2} + 10X_{3} = -12$
 $2X_{1} - X_{2} - 8X_{3} = 10$

$$X_{1} - X_{2} - 5 \times_{3} = 6$$

$$X_{2} + 2 \times_{3} = -2$$

$$X_{2} + 2 \times_{3} = -2$$

$$-E_{2} + E_{3} \Rightarrow E_{3}$$

$$X_1 - X_2 - 5X_3 = 6$$

 $X_2 + 2X_3 = -2$
 $0 = 0$

were ready for back substitution.

$$X_1 = 6 + \chi_1 + 5 \times_3$$

= 6 + (-2 - 2 \times_3) + 5 \times_3
= 4 + 3 \times_3

A parametric description of the solution set is: letting x3=t

$$x_1 = 4 + 3t$$

 $x_2 = -2 - 2t$
 $x_3 = t$, teR

Converting to vector parametric

$$\dot{X} = (X_1, X_2, X_3)$$
= $(4+3t, -2-2t, t)$
= $(4, -2, 0) + (3t, -2t, t)$
 $\dot{X} = (4, -2, 0) + (3, -2, 1)$

This is a line in \mathbb{R}^3 passing through the point (4, -2, 0) and parallel to the vector <3. -2. 1>.

Other Solution Cases

An example of the no solution case: The system

$$x_1 + 4x_2 + 3x_3 = 1$$

 $2x_1 + x_2 - x_3 = 2$
 $-x_1 + 3x_2 + 4x_3 = 0$

leads to

$$x_1 + 4x_2 + 3x_3 = 1$$

 $x_2 + x_3 = 0$
 $0 = 1$

Inconsistent systems always give rise to an equation that is false.

0 = something nonzero

2.3 Matrices

Matrix

A **matrix** (plural *matrices*) is a rectangular array of numbers of the form

Each number, a_{ij} , is called an **entry** or an **element** of the matrix. If the matrix has m rows and n columns, we say that the **size** or **dimension** of the matrix is "m by n" and write $m \times n$.

Coefficient & Augmented Matrices

Given a system of linear equations with m equations and n variables,

the **coefficient matrix** for the system is the $m \times n$ matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Coefficient & Augmented Matrices

Given a system of linear equations with m equations and n variables,

the **augmented matrix** for the system is the $m \times n + 1$ matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Example

Write the coefficient and augmented matrices for each system.

The coef matrix is
$$2 \times 9$$

$$\begin{bmatrix}
2 & 1 & -3 & 1 \\
-1 & 3 & 9 & -2
\end{bmatrix}$$
The augmented natural is 2×5

$$\begin{bmatrix}
2 & 1 & -3 & 1 & | -3 \\
-1 & 3 & 9 & -2 & | & 8
\end{bmatrix}$$

Example

Write the coefficient and augmented matrices for each system.

$$x_{1} - 2x_{2} + x_{3} = 0$$

 $+ 3x_{2} - 2x_{3} = 0$
 $x_{1} + x_{2} - x_{3} = 0$

The coef, matrix is 3×3

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 3 & -2 \\ 1 & 1 & -1 \end{bmatrix}$$
The answerted matrix is 3×3

Elementary Row Operations

We will use matrices to perform elimination without involving the symbols and variable names. We have three operations we can perform on a matrix. We'll use the notation

 R_i

to refer to the i^{th} row of the matrix.

Elementary Row Operations

- ▶ Multiply row *i* by any nonzero constant k (**scale**), $kR_i \rightarrow R_i$.
- ▶ Interchange row *i* and row *j* (**swap**), $R_i \leftrightarrow R_j$.
- ▶ Replace row j with the sum of itself and k times row i (replace), $kR_i + R_i \rightarrow R_i$.

