The Principle of Superposition

Says that if we have some solutions, say $y_{1}(x), y_{2}(x)$, and $y_{3}(x)$ of a linear homogeneous equation, then every function of the form

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+c_{3} y_{3}(x)
$$

is also a solution of that linear, homogeneous equation.
The expression

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)+c_{3} y_{3}(x)
$$

is called a linear combination of the functions $y_{1}(x), y_{2}(x)$, and $y_{3}(x)$.
We needed a criteria to distinguish functions or characterize their relationship to one another.

Linear Dependence or Independence

Suppose we have a set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ defined on some interval I. We can consider the equation

$$
\begin{equation*}
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l . \tag{1}
\end{equation*}
$$

Note that it's always possible to pick c's to make this true (e.g. you can always set all the c values to zero). We'll say that the functions are

- Linearly Dependent if the equation can be made true with at least one c being nonzero.
- Linearly Independent if the only way the equation can be true is if all the c's must be zero.

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty)$

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

Con we find C_{1}, C_{2}, C_{2} such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0
$$

for all real x ?
we might notice that

$$
\begin{aligned}
f_{3}(x) & =\frac{1}{4} f_{2}(x)-f_{1}(x) \\
x-x^{2} & =\frac{1}{4}(4 x)-x^{2}
\end{aligned}
$$

We con arrange the equation moving
event thing to the left

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

This has the form $c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}=0$
where $c_{1}=1, c_{2}=\frac{-1}{4}$, and $c_{3}=1$,

These are not all zero, so the functions are linearly dependent.

Linear Dependence Relation

An equation with at least one c nonzero, such as

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

from this last example is called a linear dependence relation for the functions $\left\{f_{1}, f_{2}, f_{3}\right\}$.

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
\left.\left.\begin{array}{l}
f_{1}(x)=\sin x, \\
f_{2}(x)=\cos x \\
W\left(f_{1}, f_{2}\right)(x)
\end{array}=\left|\begin{array}{cc}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right| \quad f_{1}^{\prime}(x)=\cos x\right] \quad f_{2}^{\prime}(x)=-\sin x\right] \text { sin } \begin{aligned}
W\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
& =\sin x(\sin x)-\cos x(\cos x) \\
& =-\sin ^{2} x-\cos ^{2} x=-1
\end{aligned}
$$

$$
W(\sin x, \cos x)(x)=-1
$$

Determine the Wronskian of the Functions

$$
\begin{aligned}
& f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2} \\
& W\left(f_{1}, f_{2}, f_{3}\right)(x)=\left|\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right| \\
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}(-8-0)-4 x(-4 x-2(1-2 x))+\left(x-x^{2}\right)(-8) \\
& =-8 x^{2}-4 x(-2)-8 x+8 x^{2} \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0
\end{aligned}
$$

$$
W\left(x^{2}, 4 x, x \cdot x^{2}\right)(x)=0
$$

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

$$
\begin{aligned}
& \text { Compute } W \text {. If } w=0 \frac{\text { dependent }}{} \\
& \text { If not then indeperdent. }
\end{aligned}
$$

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

Let's use the wronskian,

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right| \\
& =e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-2 e^{-x}-e^{-x} \\
& =-3 e^{-x} \\
w\left(y_{1}, y_{2}\right)(x) & =-3 e^{-x}
\end{aligned}
$$

Since this is not zero, the functions are linearly in dependent.

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty)
$$

and determine the general solution.
We need to show that we have two, linearly independent solutions. The ODE is $2^{n c}$ order. We hove two, b, and $y z$.

Let's verify that they are solutions.

$$
\begin{array}{lll}
y_{1}=x^{2} & \text { substitute } \\
y_{1}^{\prime}=2 x & x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1} & =0 \\
y_{1}^{\prime \prime}=2 & x^{2}(2)-4 x(2 x)+6 x^{2} \stackrel{?}{=} 0 \\
& 2 x^{2}-8 x^{2}+6 x^{2}=0
\end{array}
$$

September 8, 2021
$19 / 30$
b, is a solution

$$
0=0
$$

$$
\begin{aligned}
& y_{2}=x^{3} \\
& x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2} \stackrel{?}{=} 0 \\
& y_{2}{ }^{\prime}=3 x^{2} \\
& x^{2}(6 x)-4 x \cdot\left(3 x^{2}\right)+6 x^{3} \stackrel{?}{=} 0 \\
& y_{2}{ }^{\prime \prime}=6 x \\
& 6 x^{3}-12 x^{3}+6 x^{3} \stackrel{?}{=} 0 \\
& 0=0
\end{aligned}
$$

y_{τ} is also a solution
Compute the wronshion.

$$
\begin{aligned}
w\left(y, y_{2}\right)(x) & =\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right| \\
& =x^{2}\left(3 x^{2}\right)-2 x\left(x^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =3 x^{4}-2 x^{4}=x^{4} \\
w\left(y_{1, y_{2}}\right)(x) & =x^{4} \quad \text { not zero }
\end{aligned}
$$

Then are lineols in dependent.
we have a fundanertal solution set, and the general solution is

$$
\begin{aligned}
& y=c_{1} b_{1}+c_{2} y_{2} \\
& y=c_{1} x^{2}+c_{2} x^{3}
\end{aligned}
$$

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

