September 13 Math 2306 sec. 54 Fall 2021

Section 6: Linear Equations Theory and Terminology

We were talking about the basics of linear homogeneous ODEs.

dny dn—1y dy
an(x) a7 + an_1 (X)W + -+ a (x)a + ap(x)y =0
And we’re assuming that the functions ay, ..., a, are continuous and

that a,(x) # 0 (at least on some interval /).
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The Principle of Superposition

Says that if we have some solutions, say y1(x), y2(x), and ys(x) of a
linear homogeneous equation, then every function of the form

y(x) = c1y1(x) + caya(x) + c3ya(x)

is also a solution of that linear, homogeneous equation.

The expression
Cc1y1(x) + Caya(X) + Cays(X)
is called a linear combination of the functions y1(x), y2(x), and y3(x).

We needed a criteria to distinguish functions or characterize their
relationship to one another.
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Linear Dependence or Independence

Suppose we have a set of functions fi(x), f(x),. .., fa(x) defined on
some interval /. We can consider the equation

c1fi(x) + cofo(X) 4+ -+ cafp(x) =0 forall xin /. (1)

Note that it's always possible to pick ¢’s to make this true (e.g. you can
always set all the ¢ values to zero). We'll say that the functions are

» Linearly Dependent if the equation can be made true with at
least one ¢ being nonzero.

> Linearly Independent if the only way the equation can be true is
if all the ¢’s must be zero.
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Determine if the set is Linearly Dependent or
Independent on (—oo, o)
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Linear Dependence Relation

An equation with at least one ¢ nonzero, such as

1(3) — 3(06) + f(x) = 0

from this last example is called a linear dependence relation for the
functions {fi, f>, f3}.
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Definition of Wronskian

Let fi, o, ..., f, posses at least n — 1 continuous derivatives on an
interval /. The Wronskian of this set of functions is the determinant

f b -y

fl £

W(fi by D)) = | S
f1(”_1) f2(n—1) frgn—1)

(Note that, in general, this Wronskian is a function of the independent
variable x. )
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Determinants

a b

If Aisa 2 x 2 matrix A = [ c d ] then its determinant

det(A) = ad — bc.

a1 a2 a3
fAisa3x3matrix A= | axy as ao3 |, then its determinant
azy dz2 dss

det(A) = a11det[ 42 ax } ay det[ 21 823 ]Jra det[ 21
dz2  dass dasz1 dass ass
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Determine the Wronskian of the Functions
fi(x) =sinx, f(x) = cosx
/
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Determine the Wronskian of the Functions

f1(X):X27 f2(X):4X7 fS(X):X_XZ
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Theorem (a test for linear independence)

Let fy, &, ..., f, be n— 1 times continuously differentiable on an interval
1. If there exists xp in / such that W(fy, &, ..., fy)(X0) # 0, then the
functions are linearly independent on /.

If y1, ¥, ..., yn are n solutions of the linear homogeneous n order
equation on an interval /, then the solutions are linearly independent
on /ifand only if W(ys, ys, ..., ¥n)(x) # 0 for' each x in I.

Compnre W, 1@ W= dre Lfunchowr ane 3epondent
OMniise Moo ama metpendent

For solutions of one linear homogeneous ODE, the Wronskian is either always

Zero or is never zero.
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Determine if the functions are linearly dependent or
independent:
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Fundamental Solution Set
We're still considering this equation

dn dnf1y
an(x )dx”Jr n-1(X )dx”—1

with the assumptions a,(x) # 0 and a;(x) are continuous on /.

d
o () ok +a(x)y =0

Definition: A set of functions y1, y», ..., ¥» is a fundamental solution
set of the n" order homogeneous equation provided they

(i) are solutions of the equation,

(i) there are n of them, and

(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a
fundamental solution set.
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General Solution of n order Linear Homogeneous
Equation

Let y1, ¥, ..., ¥n be a fundamental solution set of the n order linear
homogeneous equation. Then the general solution of the equation is

y(x) = cry1(X) + Caya(X) + - - - + Cnyn(X),
where ¢4, o, ..., Cy are arbitrary constants.
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Example

Verify that y; = x2 and y» = x3 form a fundamental solution set of the
ODE

x2y" —4xy’ +6y =0 on (0,00),
and determine the general solution.
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