September 14 Math 2306 sec. 51 Fall 2022

Section 5: First Order Equations Models and Applications

The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
We solved this equation subject to the initial condition $P(0)=P_{0}$ and arrived at

$$
P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-k M t}} .
$$

If $P_{0}=0$, then $P(t)=0$ for all t. If $P_{0}>0$, then

$$
\lim _{t \rightarrow \infty} P(t)=M
$$

Logistic Growth Model

$$
\begin{gathered}
\frac{d P}{d t}=k P(M-P), \quad k, M>0 \\
\frac{d P}{d t}=f(P)=k P(m-P)=k m P-k P^{2}
\end{gathered}
$$

If $0<p<m$
$\frac{d P}{d t}>0$ P increases
If $p>M$

$$
\frac{d P}{d t}<0
$$

Logistic Modeling

Figure: Poster of recent Birla Carbon scholar

Logistic Modeling

$$
\begin{aligned}
x^{\prime} & =x\left(1-\frac{x}{k}\right)(n x-a)-\alpha x y \\
y^{\prime} & =y\left(1-\frac{y}{k}\right)(n y-b)-\beta x y \\
n^{\prime} & =n(1-n)(1-(c x+d y) n)
\end{aligned}
$$

x and y	Variables
n	- competitors - environmental state Parameters
	- extinction thresholds a and b c and d α and β k
- consumption rates - competition rates - carrying capacity	

Parameter	Value
a	0.2
b	0.2
c	varies
d	1
k	1
α	0.013
β	0.08

Figure: The species equations include an extended logistic term with threshold and competition.

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

$$
\begin{gathered}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
\end{gathered}
$$

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

The Principle of Superposition (homogeneous ode)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
\begin{equation*}
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l . \tag{1}
\end{equation*}
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

NOTE: Taking all of the c's to be zero will always satisfy equation (1). The set of functions is linearly independent if taking all of the c's equal to zero is the only way to make the equation true.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

Consider the equation

$$
\begin{aligned}
& c_{1} f_{1}(x)+c_{2} f_{2}(x)=0 \text { for al } x \\
& c_{1} \sin x+c_{2} \cos x=0
\end{aligned}
$$

Assume this is true.
The equation is true whin $x=0$.

$$
\text { so } \quad \begin{aligned}
c_{1} & \sin 0+c_{2} \cos 0
\end{aligned}=0 \quad \begin{aligned}
& \Rightarrow c_{1}(0)+c_{2}(1)=0 \quad \Rightarrow \quad c_{2}=0
\end{aligned}
$$

The equation is also tire if $x=\pi / 2$

$$
\begin{array}{r}
c_{1} \sin \frac{\pi}{2}+0 \cdot \cos \pi / 2=0 \\
c_{1}(1)=0 \quad \Rightarrow c_{1}=0
\end{array}
$$

$\Rightarrow C_{1}=c_{2}=0$ is the only
way the equation is true.

