September 14 Math 2306 sec. 51 Fall 2022

Section 5: First Order Equations Models and Applications

The equation

$$\frac{dP}{dt} = kP(M-P), \quad k, M > 0$$

is called a logistic growth equation.

We solved this equation subject to the initial condition $P(0) = P_0$ and arrived at

$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}}.$$

If $P_0 = 0$, then P(t) = 0 for all t. If $P_0 > 0$, then

$$\lim_{t\to\infty}P(t)=M.$$

Logistic Growth Model

$$\frac{dP}{dt} = kP(M-P), \quad k, M > 0$$

$$\frac{dP}{d\theta} = f(P) = kP(m-P) = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} > 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kMP - kP^{2}$$

$$\frac{dP}{d\theta} = 0 \quad P = kP^{2}$$

Logistic Modeling

Figure: Poster of recent Birla Carbon scholar

Logistic Modeling

Figure: The species equations include an extended logistic term with threshold and competition.

Section 6: Linear Equations Theory and Terminology

Recall that an *n*th order linear IVP consists of an equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

to solve subject to conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

The problem is called **homogeneous** if $g(x) \equiv 0$. Otherwise it is called **nonhomogeneous**.

Theorem: Existence & Uniqueness

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

Theorem: If a_0, \ldots, a_n and g are continuous on an interval I, $a_n(x) \neq 0$ for each x in I, and x_0 is any point in I, then for any choice of constants y_0, \ldots, y_{n-1} , the IVP has a unique solution y(x) on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

The Principle of Superposition (homogeneous ode)

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

Assume a_i are continuous and $a_n(x) \neq 0$ for all x in I.

Theorem: If $y_1, y_2, ..., y_k$ are all solutions of this homogeneous equation on an interval I, then the *linear combination*

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x)$$

is also a solution on I for any choice of constants c_1, \ldots, c_k .

Corollaries

- (i) If y_1 solves the homogeneous equation, the any constant multiple $y = cy_1$ is also a solution.
- (ii) The solution y = 0 (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y₁ and cy₁ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are said to be **linearly dependent** on an interval I if there exists a set of constants c_1, c_2, \ldots, c_n with at least one of them being nonzero such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
 for all x in I . (1)

A set of functions that is not linearly dependent on *I* is said to be **linearly independent** on *I*.

NOTE: Taking all of the c's to be zero will **always** satisfy equation (1). The set of functions is linearly **independent** if taking all of the c's equal to zero is the **only** way to make the equation true.

Example: A linearly Independent Set

The functions $f_1(x) = \sin x$ and $f_2(x) = \cos x$ are linearly independent on $I = (-\infty, \infty)$.

Consider the equation
$$c_1 f_1(x) + c_2 f_2(x) = 0 \quad \text{for all } x$$

$$c_1 \sin x + c_2 \cos x = 0$$
Assume this is true.

$$So \qquad C_1 Sin O + C_2 Cos O = O$$

The equation is also true if x= T/2

$$\Rightarrow$$
 $C_1 = (z = 0)$ is the only way the equation is true.