
September 14 Math 2306 sec. 52 Fall 2022

Section 6: Linear Equations Theory and Terminology

Recall that an nth order linear IVP consists of an equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = g(x)

to solve subject to conditions

y(x0) = y0, y ′(x0) = y1, . . . , y (n−1)(x0) = yn−1.

The problem is called homogeneous if g(x) ≡ 0. Otherwise it is called
nonhomogeneous.
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Theorem: Existence & Uniqueness

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = g(x)

y(x0) = y0, y ′(x0) = y1, . . . , y (n−1)(x0) = yn−1.

Theorem: If a0, . . . ,an and g are continuous on an interval I,
an(x) 6= 0 for each x in I, and x0 is any point in I, then for any
choice of constants y0, . . . , yn−1, the IVP has a unique solution
y(x) on I.

Put differently, we’re guaranteed to have a solution exist, and it is the
only one there is!
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The Principle of Superposition (homogeneous ode)

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0

Assume ai are continuous and an(x) 6= 0 for all x in I.

Theorem: If y1, y2, . . . , yk are all solutions of this homogeneous
equation on an interval I, then the linear combination

y(x) = c1y1(x) + c2y2(x) + · · ·+ ckyk (x)

is also a solution on I for any choice of constants c1, . . . , ck .
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Corollaries

(i) If y1 solves the homogeneous equation, the any constant multiple
y = cy1 is also a solution.

(ii) The solution y = 0 (called the trivial solution) is always a solution
to a homogeneous equation.

Big Questions:
I Does an equation have any nontrivial solution(s), and
I since y1 and cy1 aren’t truly different solutions, what criteria will be

used to call solutions distinct?
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Linear Dependence

Definition: A set of functions f1(x), f2(x), . . . , fn(x) are said to be
linearly dependent on an interval I if there exists a set of constants
c1, c2, . . . , cn with at least one of them being nonzero such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0 for all x in I. (1)

A set of functions that is not linearly dependent on I is said to be
linearly independent on I.

NOTE: Taking all of the c’s to be zero will always satisfy equation (1).
The set of functions is linearly independent if taking all of the c’s
equal to zero is the only way to make the equation true.
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Example: A linearly Independent Set

The functions f1(x) = sin x and f2(x) = cos x are linearly independent
on I = (−∞,∞).
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Determine if the set is Linearly Dependent or
Independent on (−∞,∞)

f1(x) = x2, f2(x) = 4x , f3(x) = x − x2
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