September 15 Math 2306 sec. 52 Spring 2023

Section 5: First Order Equations: Models and Applications

Logistic Growth Model

The equation $\frac{d P}{d t}=k P(M-P)$, where $k, M>0$ is called a logistic growth equation.

When coupled with the initial condition $P(0)=P_{0}$, the solution to the resulting IVP is

$$
P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-k M t}} .
$$

We saw that if $P_{0}=0$, then $P(t)=0$ for all $t>0$, and if $P_{0}>0$, then $P(t) \rightarrow M$ as $t \rightarrow \infty$.

Long Time Solution of Logistic Equation

$$
\frac{d P}{d t}=k P(M-P)=-k P^{2}+k M P
$$

Figure: Plot of P versus $\frac{d P}{d t}$. Note that $\frac{d P}{d t}>0$ if $0<P<M$ and $\frac{d P}{d t}<0$ if $P>M$.

Using the Logistic Growth Model

In practice, the basic logistic growth model is often used as a starting point, and additional considerations affecting a population can be factored in. Some common extensions include

- Constant rate harvesting (e.g., fishing): $\frac{d P}{d t}=k P(M-P)-H$,
- Popluation dependent harvesting: $\frac{d P}{d t}=k P(M-P)-H P$,
- Restocking: $\frac{d P}{d t}=k P(M-P)+R$
- Periodic harvesting/restocking: $\frac{d P}{d t}=k P(M-P)+r \sin (\omega t)$
- Threshhold dependent breeding: $\frac{d P}{d t}=k P(M-P)(P-N)$

Expected Long Time Solutions

Suppose we modify the logistic equation based on the assumption that the fish will only breed successfully if the population is above some minimum threshhold N where $0<N<M$. The new model is

$$
\frac{d P}{d t}=k P(M-P)(P-N) .
$$

Figure: Plot of P versus $\frac{d P}{d t}$ for the modified model. There are two long-time scenarios, extinction and achieving carrying capacity.

Logistic Modeling

Figure: Poster of recent Birla Carbon scholar

Logistic Modeling

$$
\begin{aligned}
x^{\prime} & =x\left(1-\frac{x}{k}\right)(n x-a)-\alpha x y \\
y^{\prime} & =y\left(1-\frac{y}{k}\right)(n y-b)-\beta x y \\
n^{\prime} & =n(1-n)(1-(c x+d y) n)
\end{aligned}
$$

x and y	Variables
n	- competitors
	- environmental state Parameters
and b - extinction thresholds c and d - consumption rates α and β - competition rates k - carrying capacity	

Parameter	Value
a	0.2
b	0.2
c	varies
d	1
k	1
α	0.013
β	0.08

Figure: The species equations include an extended logistic term with threshold and competition.

Models Derived in this Section

We have several models involving first order ODEs.

$$
\text { Exponential Growth/Decay } \frac{d P}{d t}=k P
$$

RC-Series Circuit

$$
R \frac{d q}{d t}+\frac{1}{C} q=E(t)
$$

LR-Series Circuit

$$
L \frac{d i}{d t}+R i=E(t)
$$

Classical Mixing $\quad \frac{d A}{d t}=r_{i} \cdot c_{i}-r_{o} \frac{A(t)}{V(0)+\left(r_{i}-r_{o}\right) t}$
Logistic Growth $\quad \frac{d P}{d t}=k P(M-P)$

