September 16 Math 2306 sec. 51 Fall 2022

Section 6: Linear Equations Theory and Terminology

We were considering an $n^{\text {th }}$ order, linear, homogeneous ODE.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

where all a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in an interval I.
The Principle of Superposition states that if we have some solutions $y_{1}, y_{2}, \ldots, y_{k}$ to this linear, homogeneous ODE, then every linear combination

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{k} y_{k}
$$

is also a solution. We'll use this to build what we'll call the general solution.

Linear Dependence or Independence

Suppose we have a set of functions $f_{1}, f_{2}, \ldots, f_{n}$ all defined on the same interval I, and consider the equation

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0, \quad \text { for all } x \text { in } I .
$$

- If there exists a set of constants, c_{1}, \ldots, c_{n} not all zero that make this equation true, then the functions f_{1}, \ldots, f_{n} are said to be linearly dependent.
- If this equation can ONLY be made true by taking $c_{1}=c_{2}=\cdots=c_{n}=0$, then the functions f_{1}, \ldots, f_{n} are said to be linearly independent.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

We showed that the equation

$$
c_{1} \sin x+c_{2} \cos x=0 \quad \text { for all real } x
$$

is only true when $c_{1}=0$ and $c_{2}=0$.
Remark: If there are only two functions (like this case), the functions are linearly dependent if one is a constant multiple of the other.

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty)$

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

consider $c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0$ for all x

Note that

$$
f_{3}(x)=\frac{1}{4} f_{2}(x)-f_{1}(x)
$$

Check:

$$
\begin{aligned}
x-x^{2} & \stackrel{?}{=} \frac{1}{4}(4 x)-x^{2} \\
x-x^{2} & =x-x^{2}
\end{aligned}
$$

we can rearrange this equation to set

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

September 14, $2022 \quad 4 / 30$

This is of the form

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0
$$

with $C_{1}=1, C_{2}=\frac{-1}{4}$ and $C_{3}=1$ not all zero

Hence this set of functions is linearly dependent.

Linear Dependence Relation

An equation with at least one c nonzero, such as

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

from this last example is called a linear dependence relation for the functions $\left\{f_{1}, f_{2}, f_{3}\right\}$.

Definition of Wronskian

Definition: Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval l. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

2 functions \Rightarrow the matrix will be 2×2

$$
\begin{aligned}
w\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right| & f_{1}^{\prime}(x)=\cos x \\
& =\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sin x(-\sin x)-\cos x(\cos x) \\
& =-\sin ^{2} x-\cos ^{2} x \\
& =-\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =-1
\end{aligned}
$$

$$
\begin{aligned}
& W\left(f_{1}, f_{2}\right)(x)=-1 \text { for } f_{1}(x)=\sin x \\
& f_{2}(x)=\cos x
\end{aligned}
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

3 function $\Rightarrow 3 \times 3$ matrix

$$
\begin{aligned}
w\left(f_{1}, f_{2}, f_{3}\right)(x) & =\left|\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right| \\
& =x^{2}(-8-0)-4 x(-4 x-2(1-2 x))+\left(x-x^{2}\right)(0-8) \\
& =-8 x^{2}-4 x(-4 x-2+4 x)-8\left(x-x^{2}\right) \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \\
& \quad w\left(f_{1}, f_{2}, f_{3}\right)(x)=0
\end{aligned}
$$

Theorem (a test for linear independence)

Theorem: Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval l. If there exists x_{0} in l such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on l.

$$
\text { If } W=0 \text { then limearly dependent }
$$

Alternative Version

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

Let's use the Wronskian.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right) \\
& =-2 e^{-x}-e^{-x}=-3 e^{-x} \\
W\left(y_{1}, y_{2}\right)(x) & =-3 e^{-x}
\end{aligned}
$$

Since this is not zero, y_{1} and y_{2} are linearly independent.

Fundamental Solution Set

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.
Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.
Definition Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

