
September 16 Math 2306 sec. 51 Fall 2024

Section 6: Linear Equations Theory and Terminology

Consider the second order, linear ODE

x2y ′′ − xy ′ + y = 1.

It is easy to show that y = x + 1 is a solution.



x2y ′′ − xy ′ + y = 1

Here are 10 more solutions to this ODE!

y = 1 y = x ln x + 1

y = 3x − x ln x + 1 y = 7x ln x + 8x + 1

y = 1 − 4x ln
√

x y = 5x ln
( 1

x

)
+ 1 − x

y = 16x + x ln x + 1 y = 1 − x ln x3

y = 16x ln x2 + 2
7x + 1 y = x

3 + x ln x7 + 1



An IVP

Consider the IVP

x2y ′′ − xy ′ + y = 1, y(1) = 1, y ′(1) = −1

Not one of the eleven solutions that I showed solve this IVP!

This raises some questions.
▶ What do mean when we talk about solving an ODE or an IVP?

▶ How do we know when we’re done solving an ODE?

▶ Is there something we would call THE solution?



Section 6: Linear Equations Theory and Terminology

Recall that an nth order linear IVP consists of an equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = g(x)

to solve subject to conditions

y(x0) = y0, y ′(x0) = y1, . . . , y (n−1)(x0) = yn−1.

The problem is called homogeneous if g(x) ≡ 0. Otherwise it is
called nonhomogeneous.



Theorem: Existence & Uniqueness
We have the following important theorem regarding the existence and
uniqueness of solutions to the IVP

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = g(x)

y(x0) = y0, y ′(x0) = y1, . . . , y (n−1)(x0) = yn−1.

Theorem:

If a0, . . . ,an and g are continuous on an interval I, an(x) ̸= 0
for each x in I, and x0 is any point in I, then for any choice of
constants y0, . . . , yn−1, the IVP has a unique solution y(x) on I.

Put differently, we’re guaranteed to have a solution exist, and it is the
only one there is!



Some Goals
We want to know how to construct solutions, what solutions will look
like, for linear ODEs. Some important terms will be
▶ complementary solution,
▶ particular solution,
▶ general solution

First, we will focus on homogeneous equations. We will consider the
ODE

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0.

In what follows, we will assume that ai(x) is continuous on some
interval I and that an(x) ̸= 0 for all x in I.

After we know what to expect for homogeneous equations, we’ll come
back to nonhomogeneous equations.



Recall
In the section 2 homework, there was this exercise



Superposition

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0

Theorem: The Principle of Superposition

If y1, y2, . . . , yk are all solutions of this homogeneous equation on an
interval I, then the linear combination

y(x) = c1y1(x) + c2y2(x) + · · ·+ ck yk (x)

is also a solution on I for any choice of constants c1, . . . , ck .

Remark 1: This result, known as the principle of superposition says that new
solutions to the homogeneous equation can be constructed by multiplying solutions by
constants and adding them together.

Remark 2: This is the principle of superposition for homogeneous, linear ODEs. We
will state another principle for nonhomogeneous equations.



Corollaries
These two results follow directly from the principle of superposition for
linear, homogeneous ODEs.

Corollaries

(i) If y1 solves the homogeneous equation, the any constant
multiple y = cy1 is also a solution.

(ii) The solution y = 0 (called the trivial solution) is always a
solution to a homogeneous equation.

This raies a couple of Big Questions:
▶ Does an equation have any nontrivial solution(s), and
▶ since y1 and cy1 aren’t truly different solutions, what criteria will be

used to call solutions distinct? (The next definition will address
this.)



Linear Dependence

Definition:

A set of functions f1(x), f2(x), . . . , fn(x) are said to be linearly depen-
dent on an interval I if there exists a set of constants c1, c2, . . . , cn with
at least one of them being nonzero such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0 for all x in I.

A set of functions that is not linearly dependent on I is said to be lin-
early independent on I.

Question: Can we make the sum equal to zero WITHOUT all the c’s
being zero?

YES =⇒ Linearly Dependent.

NO =⇒ Linearly Independent.



Example: A linearly Independent Set

The functions f1(x) = sin x and f2(x) = cos x are linearly independent
on I = (−∞,∞).







Determine if the set is Linearly Dependent or
Independent on (−∞,∞)

f1(x) = x2, f2(x) = 4x , f3(x) = x − x2





Linear Dependence Relation

Linear Dependence Relation

An equation with at least one c nonzero, such as

f1(x)−
1
4

f2(x) + f3(x) = 0

from this last example is called a linear dependence relation for
the functions {f1, f2, f3}.

With only two or three functions, we may be able to intuit linear
dependence/independence. We have an object that will allow us to
test for linear dependence under certain circumstances. This is the
next topic.



Definition of Wronskian

Definition: Wronskian

Let f1, f2, . . . , fn posses at least n − 1 continuous derivatives on
an interval I. The Wronskian of this set of functions is the deter-
minant

W (f1, f2, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
...

...
...

...
f (n−1)
1 f (n−1)

2 · · · f (n−1)
n

∣∣∣∣∣∣∣∣∣ .

Note that, in general, this Wronskian is a real valued function of the
independent variable x . The notation allows us to indicate what functions the
Wronskian depends on as well as the independent variable. We’ll often
shorten it to W (x) or just W as long as it’s clear from the context.



Determinant Formulas (2 × 2 and 3 × 3)

If A is a 2 × 2 matrix A =

[
a b
c d

]
, then its determinant

det(A) = ad − bc.

If A is a 3×3 matrix A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, then its determinant

det(A) = a11det
[

a22 a23

a32 a33

]
− a12det

[
a21 a23

a31 a33

]
+ a13det

[
a21 a22

a31 a32

]



Determine the Wronskian of the Functions

f1(x) = sin x , f2(x) = cos x





Determine the Wronskian of the Functions

f1(x) = x2, f2(x) = 4x , f3(x) = x − x2





Theorem (a test for linear independence)

Let f1, f2, . . . , fn be n − 1 times continuously differentiable on an
interval I. If there exists x0 in I such that

W (f1, f2, . . . , fn)(x0) ̸= 0,

then the functions are linearly independent on I.

Remark: For the sorts of functions we’re interested in, we can use this
as a test:

W = 0 =⇒ dependent or W ̸= 0 =⇒ independent


