September 17 Math 2306 sec. 51 Fall 2021

Section 7: Reduction of Order

We were considering a second order, linear, homogeneous ODE in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

for which one solution $y_{1}(x)$ is known.

Reduction of Order Formula

Reduction of order was a way of finding a second, linearly independent solution $y_{2}(x)$. We assumed that

$$
y_{2}(x)=u(x) y_{1}(x) .
$$

We obtained the formula for u

$$
u(x)=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

So our second solution

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

and the general solution

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Example
Find the general solution of the ODE given one known solution

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, \quad y_{1}=x^{2}
$$

Let's assume $x>0 . \quad y_{1}=x^{2}$ (given)

$$
y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int p d x}}{\left(y_{1}\right)^{2}} d x
$$

We need $P(x)$. $P(x)=-3 x$? no, intend in ind.
Starer form

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0
$$

$$
P(x)=\frac{-3}{x}
$$

$$
\begin{gathered}
-\int p(x) \partial x=-\int \frac{-3}{x} d x=3 \int \frac{1}{x} d x=3 \ln x=\ln x^{3} \\
e^{-\int p(x) d x}=e^{\ln x^{3}}=x^{3} . \quad y_{1}=x^{2}, \quad\left(y_{1}\right)^{2}=\left(x^{2}\right)^{2}=x^{4} \\
\int \frac{e^{-\int p(x) d x}}{\left(y_{1}\right)^{2}} d x=\int \frac{x^{3}}{x^{4}} d x=\int \frac{1}{x} d x=\ln x .
\end{gathered}
$$

Hence $y_{2}=u y_{1}=(\ln x) x^{2}$

$$
=x^{2} \ln x
$$

The general solution $y=c_{1} x^{2}+c_{2} x^{2} \ln x$

Section 8: Homogeneous Equations with Constant

 CoefficientsWe consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

If we put this in normal form, we get

$$
\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \frac{d y}{d x}-\frac{c}{a} y .
$$

Question: What sorts of functions y could be expected to satisfy

$$
\begin{aligned}
& \left.y^{\prime \prime}=(\text { constant }) y^{\prime}+\text { (constant }\right) y \text { ? } \\
& \text { an exponential," } e \text { to a constant times } x \\
& \text { or sines }+ \text { cosines }
\end{aligned}
$$

We look for solutions of the form $y=e^{m x}$ with m constant.

This is to solve $a y^{\prime \prime}+b y^{\prime}+c y=0$

$$
\begin{array}{ll}
y=e^{m x} & a y^{\prime \prime}+b y^{\prime}+c y=0 \\
y^{\prime}=m e^{m x} & a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c e^{m x}=0 \\
y^{\prime \prime}=m^{2} e^{m x} & e^{m x}\left(a m^{2}+b m+c\right)=0
\end{array}
$$

This holds if $a m^{2}+b m+C=0$
This is called the charactecistic Cor auxilliary) equation for the ODE.
$a m^{2}+b m+c$ is the Characteristic polynomid. for the ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

well have solutions $y=e^{m x}$ if the m's are roots of the chare dealstic polynomial.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Example
Find the general solution of the ODE.

The char. egn is $\quad m^{2}-2 m-2=0$
Complete the square

$$
\begin{gathered}
m^{2}-2 m+1-1-2=0 \\
(m-1)^{2}-3=0 \Rightarrow(m-1)^{2}=3 \\
m-1= \pm \sqrt{3} \\
m=1 \pm \sqrt{3}
\end{gathered}
$$

Two distinct costs

$$
m_{1}=1+\sqrt{3}, \quad m_{2}=1-\sqrt{3}
$$

Then $y_{1}=e^{(1+\sqrt{3}) x}$ and $y_{2}=e^{(1-\sqrt{3}) x}$

The seneca solution

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0
$$

There is only one real, double root, $m=\frac{-b}{2 a}$.
Use reduction of order to find the second solution to the equation (in standard form)

$$
\begin{aligned}
& y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \quad \text { given one solution } y_{1}=e^{-\frac{b}{2 a} x} \\
& y_{2}=u y_{1} \text { when } u=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}\right)^{2}} d x \\
& P(x)=\frac{b}{a} \quad-\int P(x) d x=-\int \frac{b}{a} d x=\frac{-b}{a} x
\end{aligned}
$$

$$
\begin{aligned}
& e^{-\int p(x) d x}=e^{\frac{-b}{a} x},\left(y_{1}\right)^{2}=\left(e^{\frac{-b}{2 a} x}\right)^{2}=e^{-\frac{2 b}{2 a} x}=e^{\frac{-b}{a} x} \\
& u=\int \frac{e^{\frac{-b}{a} x}}{e^{\frac{-b}{a} x} d x=\int 1 d x=x} \\
& \text { so } y_{2}=x e^{\frac{-b}{2 a} x} \quad \text { that's } x y^{\prime}
\end{aligned}
$$

Generd solution

$$
y=c_{1} e^{\frac{-b}{2 a} x}+c_{2} x e^{\frac{-b}{2 a} x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Example
Solve the ODE $4 y^{\prime \prime}-4 y^{\prime}+y=0$. lineor, coef.

Charad. eqn

$$
4 m^{2}-4 m+1=0
$$

factors as $(2 m-1)^{2}=0$

$$
\frac{y_{1}=e^{\frac{1}{2} x}, y_{2}=x e^{\frac{1}{2} x}}{\text { Gen. soln } y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}}
$$

