September 18 Math 2306 sec. 51 Spring 2023

Section 6: Linear Equations Theory and Terminology

Consider the second order, linear ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=1
$$

It is easy to show that $y=x+1$ is a solution.

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=1
$$

Here are 10 more solutions to this ODE!

$$
\begin{array}{ll}
y=1 & y=x \ln x+1 \\
y=3 x-x \ln x+1 & y=7 x \ln x+8 x+1 \\
y=1-4 x \ln \sqrt{x} & y=5 x \ln \left(\frac{1}{x}\right)+1-x \\
y=16 x+x \ln x+1 & y=1-x \ln x^{3} \\
y=16 x \ln x^{2}+\frac{2}{7} x+1 & y=\frac{x}{3}+x \ln x^{7}+1
\end{array}
$$

An IVP

Consider the IVP

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=1, \quad y(1)=1, \quad y^{\prime}(1)=-1
$$

Not one of the eleven solutions that I showed solve this IVP!

This raises some questions.

- What do mean when we talk about solving an ODE or an IVP?
- How do we know when we're done solving an ODE?
- Is there something we would call THE solution?

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

We have the following important theorem regarding the existence and uniqueness of solutions to the IVP

$$
\begin{gathered}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \cdots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{gathered}
$$

Theorem:

If a_{0}, \ldots, a_{n} and g are continuous on an interval $I, a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Some Goals

We want to know how to construct solutions, what solutions will look like, for linear ODEs. Some important terms will be

- complementary solution,
- particular solution,
- general solution

First, we will focus on homogeneous equations. We will consider the ODE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 .
$$

In what follows, we will assume that $a_{i}(x)$ is continuous on some interval I and that $a_{n}(x) \neq 0$ for all x in I.

After we know what to expect for homogeneous equations, we'll come back to nonhomogeneous equations.

Superposition

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Theorem: The Principle of Superposition

If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval I, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.

Remark 1: This result, known as the principle of superposition says that new solutions to the homogeneous equation can be constructed by multiplying solutions by constants and adding them together.

Remark 2: This is the principle of superposition for homogeneous, linear ODEs. We will state another principle for nonhomogeneous equations.

Corollaries

These two results follow directly from the principle of superposition for linear, homogeneous ODEs.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

This raies a couple of Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct? (The next definition will address this.)

Linear Dependence

Definition:

A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval I if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

Question: Can we make the sum equal to zero WITHOUT all the c's being zero?

YES $\quad \Longrightarrow \quad$ Linearly Dependent.
NO \Longrightarrow Linearly Independent.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

Let's suppose that for some numbers c_{1} and c_{2} $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all real x.
ie., $c_{1} \sin x+c_{2} \cos x=0$ for ale red x.
let's show that $C_{1}=0$ and $C_{2}=0$, necessarily.
The equation has to hold whin $x=\frac{3 \pi}{4}$. For this x, the equation is
c. $\sin \left(\frac{3 \pi}{4}\right)+c_{2} \cos \left(\frac{3 \pi}{4}\right)=0$
$c_{1}\left(\frac{1}{\sqrt{2}}\right)+c_{2}\left(\frac{-1}{\sqrt{2}}\right)=0$
September 15, $2023 \quad 10 / 40$

$$
c_{1} \frac{1}{\sqrt{2}}=c_{2} \frac{1}{\sqrt{2}} \Rightarrow c_{1}=c_{2}
$$

Now onus equation is

$$
c_{1} \sin x+c_{1} \cos x=0
$$

This has to be true when $x=\pi$. When $x=\pi$, we get

$$
\begin{aligned}
& c_{1} \sin (\pi)+c_{1} \cos (\pi)=0 \\
& c_{1}(0)+c_{1}(-1)=0 \Rightarrow-c_{1}=0 \Rightarrow c_{1}=0
\end{aligned}
$$

Since $c_{1}=c_{2}$, we home $c_{1}=c_{2}=0$.

Hence $c_{1} \sin x+c_{2} \cos x=0$ for all x orly if $c_{1}=0$ and $c_{2}=0$.

This means that $f_{1}(x)$ and $f_{2}(x)$ are linearly ind pendent.

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty) \quad$ Note

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2} \quad f_{3}(x)=\frac{1}{4} f_{2}(x)-f_{1}(x)
$$

Suppose c_{1}, c_{2}, c_{3} station fy

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0
$$

we have

$$
\begin{aligned}
& c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right)=0 \quad \text { for } x \\
& c_{1} x^{2}+4 c_{2} x+c_{3} x-c_{3} x^{2}=0
\end{aligned}
$$

If $c_{1}=c_{3}$ the x^{2} sum to zero.
If $c_{2}=\frac{-1}{4} c_{3}$ the x 's cancel

Set $c_{3}=4$, then set $c_{1}=4$ and $c_{2}=-1$.

$$
\begin{aligned}
c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right) & =0 \text { fir al } \\
4 x^{2}+(-1)(4 x)+4\left(x-x^{2}\right) & = \\
4 x^{2}-4 x+4 x-4 x^{2} & =0 \\
0 & =0
\end{aligned}
$$

we found a set of coefficients c_{1}, c_{2}, c_{3} not all zero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \quad \text { for al } x
$$

Hence this is a linearly dependent set of functions.

Linear Dependence Relation

Linear Dependence Relation

An equation with at least one c nonzero, such as

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

from this last example is called a linear dependence relation for the functions $\left\{f_{1}, f_{2}, f_{3}\right\}$.

With only two or three functions, we may be able to intuit linear dependence/independence. We have an object that will allow us to test for linear dependence under certain circumstances. This is the next topic.

Definition of Wronskian

Definition: Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

Note that, in general, this Wronskian is a real valued function of the independent variable x. The notation allows us to indicate what functions the Wronskian depends on as well as the independent variable. We'll often shorten it to $W(x)$ or just W as long as it's clear from the context.

Determinant Formulas $(2 \times 2$ and 3×3)

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

The matrix will be 2×2 since we hove two functions.

$$
\begin{aligned}
W\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{cc}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
& =\sin x(-\sin x)-\cos x(\cos x) \\
& =-\sin ^{2} x-\cos ^{2} x \\
& =-\left(\sin ^{2} x+\cos ^{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-1 \\
& W(\sin x, \cos x)(x)=-1 \\
& f_{1}(x)=e^{x}, f_{2}(x)=e^{4 x} \quad \text { Find } W\left(f_{1}, f_{2}\right)(x) . \\
& \begin{aligned}
W\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{ll}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
e^{x} & e^{4 x} \\
e^{x} & 4 e^{4 x}
\end{array}\right| \\
& =e^{x}\left(4 e^{4 x}\right)-e^{x}\left(e^{4 x}\right) \\
& =4 e^{5 x}-e^{5 x}=3 e^{5 x}
\end{aligned}
\end{aligned}
$$

