September 18 Math 2306 sec. 52 Spring 2023

Section 6: Linear Equations Theory and Terminology

Consider the second order, linear ODE

 $x^2y''-xy'+y=1.$

It is easy to show that y = x + 1 is a solution.

イロト 不得 トイヨト イヨト 二日

 $x^2y'' - xy' + y = 1$

Here are 10 more solutions to this ODE!

$$y = 1$$
 $y = x \ln x + 1$
 $y = 3x - x \ln x + 1$
 $y = 7x \ln x + 8x + 1$
 $y = 1 - 4x \ln \sqrt{x}$
 $y = 5x \ln \left(\frac{1}{x}\right) + 1 - x$
 $y = 16x + x \ln x + 1$
 $y = 1 - x \ln x^3$
 $y = 16x \ln x^2 + \frac{2}{7}x + 1$
 $y = \frac{x}{3} + x \ln x^7 + 1$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○ September 15, 2023

An IVP

Consider the IVP

$$x^{2}y'' - xy' + y = 1$$
, $y(1) = 1$, $y'(1) = -1$

Not one of the eleven solutions that I showed solve this IVP!

This raises some questions.

- What do mean when we talk about solving an ODE or an IVP?
- How do we know when we're done solving an ODE?
- Is there something we would call THE solution?

A D N A B N A B N A B N

Section 6: Linear Equations Theory and Terminology

Recall that an *n*th order linear IVP consists of an equation

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

to solve subject to conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

The problem is called **homogeneous** if $g(x) \equiv 0$. Otherwise it is called **nonhomogeneous**.

Theorem: Existence & Uniqueness

We have the following important theorem regarding the existence and uniqueness of solutions to the IVP

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

Theorem:

If a_0, \ldots, a_n and g are continuous on an interval I, $a_n(x) \neq 0$ for each x in I, and x_0 is any point in I, then for any choice of constants y_0, \ldots, y_{n-1} , the IVP has a unique solution y(x) on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

September 15, 2023

Some Goals

We want to know how to construct solutions, what solutions will look like, for linear ODEs. Some important terms will be

- complementary solution,
- particular solution,
- general solution

First, we will focus on **homogeneous** equations. We will consider the ODE

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

In what follows, we will assume that $a_i(x)$ is continuous on some interval *I* and that $a_n(x) \neq 0$ for all *x* in *I*.

After we know what to expect for homogeneous equations, we'll come back to nonhomogeneous equations.

September 15, 2023

Superposition

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

Theorem: The Principle of Superposition

If y_1, y_2, \ldots, y_k are all solutions of this homogeneous equation on an interval *I*, then the *linear combination*

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x)$$

is also a solution on *I* for any choice of constants c_1, \ldots, c_k .

Remark 1: This result, known as the principle of superposition says that new solutions to the homogeneous equation can be constructed by multiplying solutions by constants and adding them together.

Corollaries

These two results follow directly from the principle of superposition for linear, homogeneous ODEs.

Corollaries

- (i) If y_1 solves the homogeneous equation, the any constant multiple $y = cy_1$ is also a solution.
- (ii) The solution y = 0 (called the trivial solution) is always a solution to a homogeneous equation.

This raies a couple of Big Questions:

- Does an equation have any **nontrivial** solution(s), and
- since y₁ and cy₁ aren't truly different solutions, what criteria will be used to call solutions distinct? (The next definition will address this.)

Linear Dependence

Definition:

A set of functions $f_1(x), f_2(x), \ldots, f_n(x)$ are said to be **linearly dependent** on an interval *I* if there exists a set of constants c_1, c_2, \ldots, c_n with at least one of them being nonzero such that

 $c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$ for all x in I.

A set of functions that is not linearly dependent on *I* is said to be **lin**early independent on *I*.

Question: Can we make the sum equal to zero WITHOUT all the c's being zero?

YES \implies Linearly **Dependent**.

NO \implies Linearly **Independent**.

September 15, 2023

Example: A linearly Independent Set

The functions $f_1(x) = \sin x$ and $f_2(x) = \cos x$ are linearly independent on $I = (-\infty, \infty)$. suppose there are constants c, and co such Cifixit + Gf. (x) = O for all real X. that C, Sinx + C2 Cosx = 0 for all real X This equation is true for all x, so it's true when X=0 . C_1 Sin O + C_2 Cos O = O $C_1(0) + C_2(1) = 0 \implies C_2 = 0$ Cy has to be zero. The equation is September 15, 2023 10/40

CI SINX =0 for all real X. This has to be true when X = T3. For X = T3, the equation is $C_1 Sin(\frac{\pi}{3}) = 0$ $\frac{\sqrt{3}}{2}C_1=0 \quad \Rightarrow \quad C_1=0.$ Both C2 and C, must be sero for c, f, (x) + (2 f, (x) = 0 for all x to be true. This shows that f. (x) = Sinx and fr (x) = Cosx form a linearly independent

September 15, 2023 11/40

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

set of functions on (-so, so).

Determine if the set is Linearly Dependent or Independent on $(-\infty,\infty)$ $f_1(x) = x^2, \quad f_2(x) = 4x, \quad f_3(x) = x - x^2$ Suppose there are numbers C., Cz, Cz such that $c_1 f_1(x_1 + c_2 f_2(x_1 + c_3 f_3(x)) = 0$ for all rool x. i.e., $C_1 \times^2 + C_2(4x) + C_3(x-x^2) = 0$ for all x $C_{1} \chi^{2} + 4C_{2}\chi + C_{3}\chi - C_{3}\chi^{2} = 0$ If C1=C3, the x2 terms concel If $C_2 = \frac{-1}{4}C_3$, the x terms cancel. September 15, 2023 13/40

Set
$$C_1 = 1$$
, $C_3 = 1$, and $C_2 = \frac{1}{4}$
 $C_1 f_1(x) + c_2 f_2(x) + C_3 f_3(x) =$
 $L x^2 + (\frac{1}{4}) (u_X) + 1(X - X^2) =$
 $X^2 - X + X - X^2 = 0$
We found a set of coefficients, $C_1 = 1, C_2 = \frac{1}{4},$
 $C_3 = 1$, not all zero such that
 $c_1 f_1(x) + c_2 f_2(x) + C_3 f_3(x) = 0$ for all real
X
The set $\{F_1, f_3, f_3\}$ is linearly dependent.

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ September 15, 2023 14/40

Linear Dependence Relation

Linear Dependence Relation

An equation with at least one *c* nonzero, such as

$$f_1(x) - \frac{1}{4}f_2(x) + f_3(x) = 0$$

from this last example is called a **linear dependence relation** for the functions $\{f_1, f_2, f_3\}$.

With only two or three functions, we may be able to intuit linear dependence/independence. We have an object that will allow us to test for linear dependence under certain circumstances. This is the next topic.

September 15, 2023

Definition of Wronskian

Definition: Wronskian

Let $f_1, f_2, ..., f_n$ posses at least n - 1 continuous derivatives on an interval *I*. The **Wronskian** of this set of functions is the determinant

$$W(f_1, f_2, \dots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

Note that, in general, this Wronskian is a real valued function of the independent variable x. The notation allows us to indicate what functions the Wronskian depends on as well as the independent variable. We'll often shorten it to W(x) or just W as long as it's clear from the context.

Determinant Formulas (2×2 and 3×3)

If A is a 2 × 2 matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then its determinant

$$\det(A) = ad - bc.$$
If A is a 3 × 3 matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then its determinant

$$\det(A) = a_{11}\det\begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12}\det\begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{bmatrix} + a_{13}\det\begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

September 15, 2023 17/40

э

イロト イヨト イヨト イヨト

Determine the Wronskian of the Functions

 $f_1(x) = \sin x, \quad f_2(x) = \cos x$ The matrix will be 2x2 since there are two
functions. $W(f_1, f_2)(x) = \begin{vmatrix} f_1 & f_2 \\ f_2' & f_2' \end{vmatrix} = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}$

= $-Sm^2x - Gs^2x$

= 1

 $= -1 \left(\sin^2 x + \cos^2 x \right)$

イロト 不得 トイヨト イヨト ヨー ろくの

W(Sinx, Corx)(x) = -1Find the Wronstein of $f_1(x) = e^{3x}$, $f_2(x) = e^{6x}$ $W(f_{1}, f_{2})(x) = \begin{vmatrix} f_{1} & f_{2} \\ f_{1}' & f_{1} \end{vmatrix} = \begin{vmatrix} e^{3x} & e^{6x} \\ e^{3x} & 6e^{6x} \end{vmatrix}$ $= e^{3x} \left(6e^{6x} \right) - 3e^{3x} \left(e^{6x} \right)$ = 6e - 3e = 3e $W(e^{3x}, e^{6x})(x) = 3e^{9x}$ イロト 不得 トイヨト イヨト 3 September 15, 2023 19/40