## September 19 Math 2306 sec. 51 Fall 2022

## Section 6: Linear Equations Theory and Terminology

We were considering an $n^{\text {th }}$ order, linear, homogeneous ODE.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume $a_{i}$ are continuous and $a_{n}(x) \neq 0$ for all $x$ in $I$.
Definition: A Fundamental Solution Set for this homogeneous equation is a set of $n$ linearly independent solutions.

Definition Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the General Solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x),
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty),
$$

and determine the general solution.
we have to show that $y_{1}$ and $y_{2}$ are linearity independent solutions.
Let's verify that thees are solutions.

$$
\begin{aligned}
& y_{1}: \quad y_{1}=x^{2}, y_{1}^{\prime}=2 x, y_{1}^{\prime \prime}=2 \\
& x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1} \stackrel{?}{=} 0 \\
& x^{2}(2)-4 x(2 x)+6 x^{2} \stackrel{?}{=} 0
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}-8 x^{2}+6 x^{2} \stackrel{?}{=} 0 \\
& 0=0, \quad \text { y is } \\
& \text { a solution }
\end{aligned}
$$

$y_{2}: \quad y_{2}=x^{3}, \quad y_{2}^{\prime}=3 x^{2}, \quad y_{2}^{\prime \prime}=6 x$

$$
\begin{aligned}
x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2} & \stackrel{?}{=} 0 \\
x^{2}(6 x)-4 x\left(3 x^{2}\right)+6 x^{3} & \stackrel{?}{=} 0 \\
6 x^{3}-12 x^{3}+6 x^{3} & \stackrel{?}{=} 0 \\
0 & =0 \text { y } y^{2} \prime
\end{aligned}
$$

solver

Let's show that $y_{1}$ and $y_{2}$ are linearly, independent.

Lat's use the wronskion.

$$
\begin{aligned}
& W\left(y, y_{2}\right)(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right| \\
& =x^{2}\left(3 x^{2}\right)-2 x\left(x^{3}\right)=3 x^{4}-2 x^{4}=x^{4}
\end{aligned}
$$

Since thas is not zero, $y_{1}$, and $y_{z}$ are linearly independent. we how 2 solutions that are lin. independent, hence we have a fundament d elution set.

The general solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}
$$

## Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where $g$ is not the zero function. We'll continue to assume that $a_{n}$ doesn't vanish and that $a_{i}$ and $g$ are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

## Theorem: General Solution of Nonhomogeneous Equation

Theorem: Let $y_{p}$ be any solution of the nonhomogeneous equation, and let $y_{1}, y_{2}, \ldots, y_{n}$ be any fundamental solution set of the associated homogeneous equation.
Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Note the form of the solution $y_{c}+y_{p}$ !
(complementary plus particular)

## Superposition Principle (for nonhomogeneous eqns.)

Consider the nonhomogeneous equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{1}(x)+g_{2}(x) \tag{1}
\end{equation*}
$$

Theorem: If $y_{p_{1}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)
$$

and $y_{p_{2}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{2}(x)
$$

then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

is a particular solution for the nonhomogeneous equation (1).

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$ We will construct the general solution by considering sub-problems.
(a) Part 1 Verify that

$$
\begin{aligned}
& y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36 . \\
& y_{p_{1}}=6, y_{p_{1}}^{\prime}=0, y_{p_{1}}^{\prime \prime}=0 \\
& x^{2} y_{p_{1}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}}=36 \\
& x^{2}(0)-4 x(0)+6(6) \vdots 36 \\
& 36=36
\end{aligned}
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Part 2 Verify that

$$
y_{p_{2}}=-7 x \quad \text { solves } \quad x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x
$$

$$
\begin{aligned}
& y_{p_{2}}=-7 x, y_{p_{2}}^{\prime}=-7, y_{p_{2}}^{\prime \prime}=0 \\
& x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}}=-14 x \\
& x^{2}(0)-4 x(-7)+6(-7 x) \stackrel{?}{=}-14 x \\
& 28 x-42 x \stackrel{?}{l} \\
&=-14 x \\
&-14 x=-14 x
\end{aligned}
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Part 3 We already know that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

$$
y=y_{c}+y_{p} \quad y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} x^{2}+c_{2} x^{3}
$$

And from (a) and (b) and the principle of superposition, $y_{p}=y_{p_{1}}+y_{p_{2}}=6-7 x$

The general solution is $y=c_{1} x^{2}+c_{2} x^{3}+6-7 x$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

The general solution $y=c_{1} x^{2}+c_{2} x^{3}+6-7 x$. we need to find $C_{1}$ and $C_{2}$ to satisty the $I C$.

$$
\begin{aligned}
& y=c_{1} x^{2}+c_{2} x^{3}+6-7 x \\
& y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7 \\
& y(1)=c_{1}(1)^{2}+c_{2}(1)^{3}+6-7(1)=0 \\
& \quad c_{1}+c_{2}=1 \\
& y^{\prime}(1)=2 c_{1}(1)+3 c_{2}(1)^{2}-7=-5
\end{aligned}
$$

$$
2 c_{1}+3 c_{2}=2
$$

Solve $c_{1}+c_{2}=1 \quad \Rightarrow \quad 2 c_{1}+2 c_{2}=2$

$$
\begin{aligned}
& \begin{array}{l}
c_{1}+c_{2}=1 \\
2 c_{1}+3 c_{2}=2
\end{array} \quad-\frac{2 c_{1}+3 c_{2}=2}{-c_{2}=0} \quad c_{2}=0 \\
& c_{1}+0=1 \Rightarrow c_{1}=1
\end{aligned}
$$

The solution to the IVP is

$$
y=x^{2}+6-7 x
$$

## Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.
$\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0$
Some things to keep in mind:

- Every fundamental solution set has two linearly independent solutions $y_{1}$ and $y_{2}$,
- The general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

Suppose we know one solution $y_{1}(x)$. This section is about a process called Reduction of order. Reduction of order is a method for finding a second solution by assuming that

$$
y_{2}(x)=u(x) y_{1}(x) .
$$

The goal is to find the unknown function $u$.


## Context

- We start with a second order, linear, homogeneous ODE in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

- We know one solution $y_{1}$. (Keep in mind that $y_{1}$ is a known!)
- We know there is a second linearly independent solution (section 6 theory says so).
- We try to find $y_{2}$ by guessing that it can be found in the form

$$
y_{2}(x)=u(x) y_{1}(x)
$$

where the goal becomes finding $u$.

- Due to linear independence, we know that $u$ cannot be constant.

Example
Find the general solution to the ODE $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$ for $x>0$ given that $y_{1}(x)=x$ is one solution.
Put the ODE in standard form:

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=0
$$

set

$$
\begin{aligned}
& y_{2}=u y_{1} \\
& y_{2}=x u \quad \text { substitute } \\
& y_{2}^{\prime}=x u^{\prime}+u \\
& y_{2}^{\prime \prime}=x u^{\prime \prime}+u^{\prime}+u^{\prime}=x u^{\prime \prime}+2 u^{\prime} \\
& y_{2}^{\prime \prime}-\frac{1}{x} y_{2}^{\prime}+\frac{1}{x^{2}} y_{2}=0
\end{aligned}
$$

$$
\begin{gathered}
x u^{\prime \prime}+2 u^{\prime}-\frac{1}{x}\left(x u^{\prime}+u\right)+\frac{1}{x^{2}}(x u)=0 \\
x u^{\prime \prime}+2 u^{\prime}-u^{\prime}-\frac{1}{x} u+\frac{1}{x} u=0 \\
x u^{\prime \prime}+u^{\prime}=0
\end{gathered}
$$

Let $w=u^{\prime}$ so that $w^{\prime}=u^{\prime \prime}$

$$
x w^{\prime}+w=0 \quad \text { list order and } \begin{aligned}
& \text { linear sep ancble }
\end{aligned}
$$

separating:

$$
\begin{aligned}
& x \frac{d w}{d x}=-w \\
& \frac{1}{w} \frac{d w}{d x}=\frac{-1}{x}
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{1}{w} d w & =\int \frac{-1}{x} d x \\
\ln |w| & =-\ln x+c=\ln x^{-1}+C \\
|w| & =e^{\ln x^{\prime}+c}=e^{c} x^{-1} \\
\text { Choose } \quad k & = \pm e^{c} \\
w & =k x^{-1} \\
u^{\prime}=w \Rightarrow u & \Rightarrow \int w d x=k \int \frac{1}{x} d x \\
\Rightarrow u & =k \ln x
\end{aligned}
$$

So $y_{2}=x h=k x \ln x$
we con let $k=1$

$$
y_{2}=x \ln x
$$

The severe solution

$$
y=c_{1} x+c_{2} x \ln x
$$

