September 19 Math 2306 sec. 51 Fall 2022

Section 6: Linear Equations Theory and Terminology

We were considering an n'" order, linear, homogeneous ODE.

dny dn—1y dy
en T a1 () g o an(X) o+ a(x)y =0

Assume a; are continuous and a,(x) # 0 for all x in /.

an(x)

Definition: A Fundamental Solution Set for this homogeneous
equation is a set of n linearly independent solutions.

Definition Let y1, y», ..., y» be a fundamental solution set of the nt"
order linear homogeneous equation. Then the General Solution of
the equation is

y(x) = cry1(X) + Caya(X) + - -+ + Cnyn(X),
where ¢4, Co, ..., Cy are arbitrary constants.
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Example

Verify that y; = x2 and y» = x3 form a fundamental solution set of the
ODE

x2y" —4xy’ +6y =0 on (0,00),
and determine the general solution.
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Nonhomogeneous Equations
Now we will consider the equation

dny dnf1y dy B
X" W—I—--'—G—&(X)a-i-ao(x)y—g(x)

where g is not the zero function. We'll continue to assume that a,
doesn’t vanish and that a; and g are continuous.

an(x) + an-1(x)

The associated homogeneous equation is

an y dn—1 y dy

dx’ W+"'+31(X)7+30(X)y:0.

an(x) ax

+ an_1(x)
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Theorem: General Solution of Nonhomogeneous
Equation

Theorem: Let y, be any solution of the nonhomogeneous equa-
tion, and let y4, y», ..., yn be any fundamental solution set of the
associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

Y = c1yi(X) + caya(X) + - + Cayn(X) + Yp(X)

where ¢y, Co, ..., Cy are arbitrary constants.

Note the form of the solution y¢ + yp!
(complementary plus particular)
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Superposition Principle (for nonhomogeneous eqgns.)
Consider the nonhomogeneous equation

n n—1
00D b0 () %Y 0Dt 2oy = 1) 20 (1

Theorem: If y,, is a particular solution for

dy
an(X) % + -+ a(x)y = gi(x).

and yp, is a particular solution for

dn
an(X) 5+ @(X)y = Ga(x),

then
Yo =Yoi + Yo,
is a particular solution for the nonhomogeneous equation (1).
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Example x2y” — 4xy’ + 6y = 36 — 14x
We will construct the general solution by considering
sub-problems.

(a) Part 1 Verify that

Yp, =6 solves x2y” —4xy’ 4 6y = 36.

v a_
Jo.70 1 9e, 70, Yp 7O

KTop, <Xy, +Cp = 36
(o) - ux(o + 6(6) = 3b
36 <36
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Example x2y” — 4xy’ + 6y = 36 — 14x
(b) Part 2 Verify that |

Yo, = —7x solves x%y" —4xy' +6y = —14x.
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Example x2y” — 4xy’ + 6y = 36 — 14x
(c) Part 3 We already know that y; = x? and y» = x3 is a fundamental
solution set of

x2y" —4xy' + 6y =0.

Use this along with results (a) and (b) to write the general solution of
x2y" — 4xy' + 6y = 36 — 14x.
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Solve the IVP
x2y" —4xy' +6y =36 —14x, y(1)=0, y'(1)=-5
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Section 7: Reduction of Order

We’ll focus on second order, linear, homogeneous equations. Recall
that such an equation has the form

Let us assume that a>(x) # 0 on the interval of interest. We will write
our equation in standard form

d?y dy B
+P(x) o+ Q(x)y =0

dx?
where P = a;/a» and Q = ag/ ao.
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dxg Y+ P(x) §’+Q(X)y:

Some things to keep in mind:

» Every fundamental solution set has two linearly independent
solutions y; and yo,

» The general solution will be

y = ciyi(x) + caye(X).

Suppose we know one solution y1(x). This section is about a process
called Reduction of order. Reduction of order is a method for finding
a second solution by assuming that
9 % ““‘w o
ya(X) = u(x)y1(x). W O,n

The goal is to find the unknown function u. /
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Context

> We start with a second order, linear, homogeneous ODE in
standard form

d’y dy B
W + P(X)a + Q(X)y =0.

\4

We know one solution y1. (Keep in mind that y; is a known!)

> We know there is a second linearly independent solution (section
6 theory says so).

> We try to find y» by guessing that it can be found in the form

Ya(x) = u(x)y1(x)

where the goal becomes finding u.

» Due to linear independence, we know that v cannot be
constant.
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Example

Find the general solution to the ODE ~ x2y” — xy’ +y = 0 for x > 0
given that y1(x) = x is one solution.
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