September 1 Math 2306 sec. 52 Spring 2023

Section 4: First Order Equations: Linear \& Special

We're considering two types of first order differential equations in this section. A first order linear equation is one of the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) \tag{1}
\end{equation*}
$$

Let's recall the solution process, and then consider equations known as Bernoulli differential equations.

Solution Process $1^{\text {st }}$ Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
\begin{aligned}
y(x) & =\frac{1}{\mu(x)} \int \mu(x) f(x) d x \\
& =e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
\end{aligned}
$$

Bernoulli Equations

Bernoulli $1^{\text {st }}$ Order Equation

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: A Bernoulli equation looks like a linear one at first glance. However, since $n \neq 0,1$ a Bernoulli equation is necessarily nonlinear.

Solving the Bernoulli Equation

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) y^{n} \tag{2}
\end{equation*}
$$

We'll solve (2) by using a change of variables

$$
u=y^{1-n}
$$

The new variable u will satisfy a linear equation which we will solve and substitute back $y=u^{\frac{1}{1-n}}$.
well derive on equation for u. Lets find $\frac{d y}{d x}$.

$$
u=y^{1-n} \Rightarrow \frac{d}{d x} u=\frac{d}{d x} y^{1-n} \Rightarrow \frac{d u}{d x}=(1-n) y^{1-n-1} \frac{d y}{d x}
$$

Divide by $t n$ and muetiplo by y^{n}

$$
\frac{d y}{d x}=\frac{1}{1-n} y^{n} \frac{d u}{d x} \quad \text { sub into the ODC }
$$

$$
\frac{1}{1-n} y^{n} \frac{d u}{d x}+P(x) y=f(x) y^{n}
$$

Multiply by $1-n$ and divide by y^{n}

$$
\begin{aligned}
\frac{d u}{d x}+(1-n) P(x) \underbrace{\frac{y}{y^{n}}}_{u^{1-n}} & =(1-n) f(x) \\
y^{1-n} & =u
\end{aligned}
$$

so u solves

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

we can write the $1^{\text {st }}$ order linear ODE for u as $\quad \frac{d u}{d x}+P_{1}(x) u=f_{1}(x)$
where $P_{1}(x)=(1-n) P(x)$ and

$$
f_{1}(x)=(1-n) f(x)
$$

From $u=y^{1-n}, \quad y=u$

Solving a Bernoulli Equation
 $\frac{d y}{d x}+P(x) y=f(x) y^{n}$

- Introduce the new dependent variable $u=y^{1-n}$.
- Then u solves the first order linear equation

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

- Solve this linear equation using an integrating factor (in the usual way).
- Substitute back to the original variable

$$
y=u^{\frac{1}{1-n}} .
$$

Example
Solve the initial value problem

$$
\frac{d y}{d x}+\frac{2}{x} y=x^{3} y^{3}, \quad x>0, \quad y(1)=\frac{1}{2}
$$

The equation is Bernoulli with

$$
n=3, \quad P(x)=\frac{2}{x}, \quad f(x)=x^{3}, \quad 1-n=1-3=-2
$$

Set $u=y^{1-n}=y^{-2}$. u solves

$$
\begin{aligned}
& \frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x) \\
& \frac{d u}{d x}+(-2) \frac{2}{x} u=(-2) x^{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d u}{d x}-\frac{4}{x} u & =-2 x^{3} \\
P_{1}(x)=\frac{-4}{x}, \quad \mu & =e^{\int P_{1}(x) d x}=e^{\int \frac{-4}{x} d x} \text { orden linecr }
\end{aligned}=e^{-4 \ln x}
$$

Multiply by μ

$$
\begin{gathered}
\frac{d}{d x}\left(x^{-4} u\right)=x^{-4}\left(-2 x^{3}\right)=-2 x^{-1} \\
\int \frac{d}{d x}\left(x^{-4} u\right) d x=\int \frac{-2}{x} d x \\
x^{-4} u=-2 \ln x+C \\
u=\frac{-2 \ln x+C}{x^{-4}}=-2 x^{4} \ln x+C x^{4}
\end{gathered}
$$

$$
u=c x^{4}-2 x^{4} \ln x
$$

we need to solve for y and apply $y(1)=\frac{1}{2}$.
we con turn $y(1)=\frac{1}{2}$ into a condition on u.

$$
\begin{gathered}
u=y^{-2 \Rightarrow u(1)}=(y(1))^{-2}=\left(\frac{1}{2}\right)^{-2}=4 \\
u(1)=4 \Rightarrow u(1)=c(1)^{4}-2(1)^{4} \ln 1=c=4 \\
c=4 \\
\text { So } u=4 x^{4}-2 x^{4} \ln x
\end{gathered}
$$

$$
\text { Since } u=y^{-2}, y=u^{-1 / 2}
$$

The solution to the IVP is

$$
y=\left(4 x^{4}-2 x^{4} \ln x\right)^{-1 / 2}
$$

Since $b(D)>0, \quad u=y^{-2} \Rightarrow y=u^{-1 / 2}$ and not $y=-u^{-1 / 2}$

