September 20 Math 2306 sec. 51 Fall 2021

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order¹, linear, homogeneous equation with constant coefficients

$$arac{d^2y}{dx^2}+brac{dy}{dx}+cy=0, \quad ext{with } a
eq 0.$$

If the number m is a solution to the characteristic equation²

$$am^2+bm+c=0,$$

then $y = e^{mx}$ is a solution to the differential equation. There are three cases for *m*.

¹We'll extend the result to higher order at the end of this section.

²The expression $am^2 + bm + c$ is the characteristic polynomial, and the equation $am^2 + bm + c = 0$ is called the characteristic or auxiliary equation.

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$.

There are two different roots m_1 and m_2 . A fundamental solution set consists of

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

September 17, 2021

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root *m*, then a fundamental solution set to the second order equation consists of

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

September 17, 2021

Solve the IVP



$$y'' + 6y' + 9y = 0, \quad y(0) = 4, \quad y'(0) = 0$$

The charad cistic equation is

$$m^{2} + 6m + 9 = 0$$

fador $(m+3)^{2} = 0 \implies m = -3$ repeated
so $y_{1} = e^{3x}$ and $y_{2} = x e^{-3x}$
The general solution
 $y = C_{1}e^{-3x} + C_{2} \times e^{-3x}$

2

イロト イヨト イヨト イヨト

Apply the IC. $y' = -3C_1 e^{-3x} + C_2 e^{-3x} - 3C_2 x e^{-3x}$

 $y(0) = C, e^{2} + C_{2} \cdot 0 \cdot e^{2} = 4 \implies C_{1} = 4$ $y'(0) = -3C, e^{2} + C_{2} \cdot e^{2} = -3C_{2} \cdot 0 \cdot e^{2} = 0$ $-3C_{1} + C_{2} = 0 \implies C_{2} = 3C_{1} = 3C_{2} = 3C_{2}$

The solution to the IVP y= 4e^{-3x} + 12 x.e^{-3x}

September 17, 2021 5/53

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のので

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

The two roots of the characteristic equation will be

$$m_1 = \alpha + i\beta$$
 and $m_2 = \alpha - i\beta$ where $i^2 = -1$.

We want our solutions in the form of <u>real valued</u> functions. We start by writing a pair of solutions

$$Y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} e^{i\beta x}$$
, and $Y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} e^{-i\beta x}$.

September 17, 2021

6/53

We will use the **principle of superposition** to write solutions y_1 and y_2 that do not contain the complex number *i*.

Deriving the solutions Case III

Recall Euler's Formula³ : $e^{i\theta} = \cos \theta + i \sin \theta$.

$$Y_{1} = e^{\alpha x} e^{i\beta x} = e^{A \times} \left(C_{os} \left(\beta \times \right) + i \leq in \left(\beta \times \right) \right)$$

$$Y_{2} = e^{\alpha x} e^{-i\beta x} = e^{d x} \left(G_{0s}(\beta x) - i Sm(\beta x) \right)$$

$$Let \quad y_{1} = \frac{1}{2} (y_{1} + \frac{1}{2} y_{2}) = \frac{1}{2} \left(2e^{\alpha x} C_{0s}(\beta x) \right) = e^{\alpha x} C_{0s}(\beta x)$$

$$Let \quad y_{2} = \frac{1}{2i} (y_{1} - \frac{1}{2i} y_{2}) = \frac{1}{2i} \left(2i e^{\alpha x} Sin(\beta x) \right) = e^{\alpha x} Sin(\beta x)$$

³As the sine is an odd function $e^{-i\theta} = \cos \theta - i \sin \theta$.

y,= excos(Bx) and yr= exsin(Bx)

General solution

y= c, ex as (px) + cz e S.r (px)

イロン イボン イヨン 一日

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).$$

< ロ > < 同 > < 回 > < 回 >

September 17, 2021

Find the general solution of $\frac{a}{2}$

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0.$$

Choca distic eqn

$$m^2 + 4m + 6 = 0$$

Completing the square
 $m^2 + 4m + 4 - 4 + 6 = 0$
 $(m + 2)^2 + 2 = 0$
 $(m + 2)^2 = -2$
 $m + 2 = \pm \sqrt{-2} = \pm \sqrt{-2}$

э

$$m = -2 \pm iJz \qquad q \pm i\beta$$

Complex case with $q = -2$ and $\beta = Jz$
The solution r
 $X_{1} = \overline{e}^{2t} \cos(Jz t), X_{2} = \overline{e}^{2t} \sin(Jz t)$

The general solution $X = C, e^{2t} C_{ps}(Jzt) + C_{z} e^{-zt} Sin(Jzt)$

1

September 17, 2021 11/53

<ロト <回 > < 回 > < 回 > < 回 > … 回

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, *m* may be a root of multiplicity *k* where $1 \le k \le n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x), \dots,$$

 $x^{k-1}e^{\alpha x}\cos(\beta x), x^{k-1}e^{\alpha x}\sin(\beta x)$

< □ > < @ > < ≧ > < ≧ > < ≧ > ≧
September 17, 2021

Find the general solution of the ODE.

$$y''' + y'' + 4y' + 4y = 0$$

$$3^{ch} orden, linear, homogeneous
Constant coef. We should
have 3
The characteristic equation is
$$m^{3} + m^{2} + 4m + 4 = 0$$

$$fa doing by grouping
$$m^{2} (m+1) + 4 (m+1) = 0$$

$$(m+1) (m^{2} + 4) = 0$$

$$m+1 = 0 \implies m=-1 \quad real root$$
September 17, 2021 14/53$$$$

$$M^{2}+Y=0 \implies M^{2}=-Y \implies M=\pm \sqrt{-Y}=\pm i2$$

$$M=0\pm i2$$
Gamplex Conjugater with $q=0, \beta=2$
From $m=-1, y_{1}=e^{-x}$

$$M=0\pm i, y_{2}=e^{0}C_{3}(2x) = y_{3}=e^{0}x \sin(2x)$$
The general solution
$$y=C_{1}e^{-x}+C_{2}C_{3}(2x)+C_{3}Sin(2x)$$

September 17, 2021 15/53

・ロト・西ト・ヨト・ヨー うへの

Find the general solution of the ODE.

2rd order, linear, homogeneour y''' - 3y'' + 3y' - y = 0Constant coef we need 3 lin, indep. soms The observation egos is $m^{3} - 3m^{2} + 3m - 1 = 0$ This is $(m-1)^3 = 0 \implies m=1$ is a point of The solutions are $y_1 = e^{1x} = e^{x}$, $y_2 = xe^{x}$, $y_3 = x^2 e^{x}$

The general solution y= c, ex + cz x ex + cz x ex

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ September 17, 2021 17/53

The ODE

 $y^{(7)} - 5y^{(6)} + 11y^{(5)} - 31y^{(4)} + 40y^{(3)} - 8y'' + 48y' + 144y = 0$ has characteristic polynomial

$$(m^2+4)^2(m-3)^2(m+1).$$

Determine the general solution.

 $y_2 = e^{3x}$, $y_3 = x e^{3x}$ $(m^2+4)^2 = 0 \implies m^2+4=0$ $M = \pm iZ = O \pm iZ$ q=0, p=2 are for double complex and work roots $y_{y} = e^{0x} C_{ss}(zx)$ $y_{s} = e^{0x} S_{in}(z_{\infty})$ $y_{b} = x e^{x} G(z_{x}) \quad y_{y} = x e^{x} S_{y}(z_{x})$

Gen. 5th $y = C_1 \stackrel{-x}{e} + C_2 \stackrel{-3x}{e} + C_3 \stackrel{3x}{e} + C_4 Cos 2x + G Sin 2x$ $+ C_6 \times Cos (2x) + C_7 \times Sin (2x)$