September 20 Math 2306 sec. 51 Spring 2023

Section 6: Linear Equations Theory and Terminology

We're considering n^{th} order, linear equations

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)rac{dy}{dx} + a_0(x)y = g(x),$$
 (1)

and assuming that a_0, \ldots, a_n and g are continuous on some interval I and $a_n(x) \neq 0$ on I.

The goal is to determine what the *general solution* of (1) should look like. For now, we are focused only on the homogeneous case (right side is zero)

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

Recall Superposition

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

Theorem: The Principle of Superposition

If y_1, y_2, \ldots, y_k are all solutions of this homogeneous equation on an interval *I*, then the *linear combination*

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x)$$

September 19, 2023

2/27

is also a solution on *I* for any choice of constants c_1, \ldots, c_k .

This says that we can build new solutions from existing ones by (1) multiplying by constants and (2) adding.

Linear Dependence

Definition: Linear Dependence

A set of functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are said to be **linearly dependent** on an interval *I* if there exists a set of constants $c_1, c_2, ..., c_n$ with at least one of them being nonzero such that

 $c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$ for all x in I.

Definition: Linear Independence

A set of functions $f_1(x)$, $f_2(x)$,..., $f_n(x)$ are said to be **linearly independent** on an interval *I* if the equation

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
 for all x in I

is only true when $c_1 = c_2 = \cdots = c_n = 0$.

< ロ > < 同 > < 回 > < 回 >

Example of Linearly Independent Set

The functions $f_1(x) = \sin x$ and $f_2(x) = \cos x$ are linearly independent on $(-\infty, \infty)$ because

$$c_1 \sin(x) + c_2 \cos(x) = 0$$
 for all real x

is ONLY true if $c_1 = 0$ and $c_2 = 0$.

Example of Linearly Dependent Set

In contrast, the set of functions $f_1(x) = x^2$, $f_2(x) = 4x$, and $f_3(x) = x - x^2$ is **linearly dependent** on $(-\infty, \infty)$ because for every real *x*

$$4f_1(x) - f_2(x) + 4f_3(x) = 0.$$
 (2)

We called the equation (2) a linear dependence relation.

Definition: Wronskian

Let $f_1, f_2, ..., f_n$ posses at least n - 1 continuous derivatives on an interval *I*. The **Wronskian** of this set of functions is the determinant

$$W(f_1, f_2, \dots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

In the case of two functions, $\{y_1, y_2\}$, the Wronskian is

$$W(y_1, y_2)(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = y_1(x)y_2'(x) - y_1'(x)y_2(x)$$

Determinant Formulas (2×2 and 3×3)

If A is a 2 × 2 matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then its determinant

$$\det(A) = ad - bc.$$
If A is a 3 × 3 matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then its determinant

$$\det(A) = a_{11}\det\begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12}\det\begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{bmatrix} + a_{13}\det\begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

September 19, 2023 6/27

イロト イヨト イヨト イヨト

Determine the Wronskian of the Functions

$$f_1(x) = x^2$$
, $f_2(x) = 4x$, $f_3(x) = x - x^2$

The matrix will be 3×3.

$$\mathcal{M}(t^{*}, t^{*}, t^{3})(x) = \begin{vmatrix} t^{*}_{, 1} & t^{*}_{, 2} & t^{3}_{, 1} \\ t^{*}_{, 1} & t^{*}_{, 2} & t^{3}_{, 1} \\ t^{*}_{, 2} & t^{*}_{, 2} & t^{3}_{, 2} \end{vmatrix}$$

$$= \begin{vmatrix} x^{2} & 4x & x - x^{2} \\ zx & 4 & 1 - zx \\ z & 0 & -z \end{vmatrix}$$

September 19, 2023 7/27

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

$$= \chi^{2} \begin{vmatrix} 4 & 1 - 2\chi \\ 0 & -2 \end{vmatrix} - 4\chi \begin{vmatrix} 2\chi & 1 - 2\chi \\ 2 & -2 \end{vmatrix} + (\chi - \chi^{2}) \begin{vmatrix} 2\chi & 4 \\ 2 & 0 \end{vmatrix}$$

$$= \chi^{2}(-8) - 4\chi \left(-4\chi - \lambda(1-2\chi)\right) + (\chi-\chi^{2})(-8)$$

-4\chi - 2 + 4\chi

$$= -8x^{2} + 8x - 8x + 8x^{2}$$

= D

$$W(f_{1}, f_{2}, f_{3}) \propto = 0$$

 $f_{1}(x) = x^{2}, f_{2} \propto = 4x, f_{3}(x) = x - x^{2}$

Theorem (a test for linear independence)

Let f_1, f_2, \ldots, f_n be n - 1 times continuously differentiable on an interval *I*. If there exists x_0 in *I* such that

 $W(f_1, f_2, \ldots, f_n)(x_0) \neq 0,$

then the functions are **linearly independent** on *I*.

We can use this as a test for linear dependence.

 $W \neq 0 \implies$ Independent

It is possible to construct a pair of linearly independent functions whose Wronskian is zero. But such a pair can't be solutions to the same linear ODE. So for our purposes, we can say W = 0 implies linear dependence.

Example

Determine whether the functions are linearly dependent or linearly independent on the given interval.

$$y_{1} = x^{2}, \quad y_{2} = x^{3} \quad I = (0, \infty)$$

$$u_{e} \quad cn \quad use \quad Hre \quad Uronskian.$$

$$U(y_{1}, y_{2})(x) = \begin{vmatrix} x^{2} & x^{3} \\ zx & 3x^{2} \end{vmatrix}$$

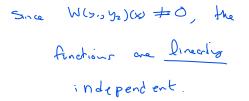
$$= x^{2}(3x^{2}) - 2x(x^{3})$$

$$= 3x^{4} - 2x^{4}$$

$$= x^{4}$$

$$September 19, 2023$$

11/27



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fundamental Solution Set

We continue to consider the *n*th order, linear, homogeneous ODE

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

We're ready to get at what the solution to a homogeneous linear ODE will be. First, a definition.

Definition: Fundamental Solution Set

A set of functions $y_1, y_2, ..., y_n$ is a **fundamental solution set** of the n^{th} order homogeneous equation provided they

- (i) are solutions of the equation,
- (ii) there are *n* of them, and
- (iii) they are linearly independent.

Fundamental Solution Set

Theorem

If a_1, a_2, \ldots, a_n are continuous on an interval *I* and $a_n(x) \neq 0$ for every *x* in *I*, then the homogeneous equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

possess a fundamental solution set.

So under the conditions on the coefficients that we've stated, a fundamental solution exists. The next definition tells us what the general solution to the ODE is.

< ロ > < 同 > < 回 > < 回 >

September 19, 2023

14/27

General Solution of *n*th order Linear Homogeneous Equation

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
(3)

Definition: General Solution of Homogeneous, Linear ODE

Let $y_1, y_2, ..., y_n$ be a fundamental solution set of the n^{th} order linear homogeneous equation (3). Then the **general solution** of (3) is

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),$$

where c_1, c_2, \ldots, c_n are arbitrary constants.

Remark: This indicates that the task of solving an n^{th} order linear **homogeneous** ODE is to find a fundamental solution set, i.e., *n*, linearly independent solutions. We build the general solution by creating a linear combination.

A D N A D N A D N A D N

September 19, 2023

15/27

Example

Verify that $y_1 = x^2$ and $y_2 = x^3$ form a fundamental solution set of the ODE

$$x^2y'' - 4xy' + 6y = 0$$
 on $(0, \infty)$,

and determine the general solution.

Since the ODE is 2nd order, we have to show that we have two, linearly independent solutions. • Since $W(y_1, y_2)(x) = \chi^4 \neq 0$, this is a linearly independent pair of functions Let's show that they are solutions September 19, 2023 16/27

$$x^{2}y'' - 4xy' + 6y = 0$$

 $y_{1} = x^{2}$ and $y_{2} = x^{3}$
 $y_{1}' = 2x$ $y_{2}'' = 3x^{2}$
 $y_{1}'' = 2$ $y_{2}'' = 6x$

$$y_{1}: \quad x^{2}y_{2}, \quad -4xy_{1}, \quad +6y_{2}, \quad \stackrel{?}{=} 0$$

$$x^{2}(z) - 4x(zx) + 6(x^{2}) \stackrel{?}{=} 0$$

$$2x^{2} - 8x^{2} + 6x^{2} \quad \stackrel{?}{=} 0$$

$$0 \quad = 0$$

y, is solution

$$y_{2}: \qquad x^{2}y_{2}'' - 4xy_{2}' + 6y_{2}^{2} = 0$$

$$x^{2}(6x) - 4x(3x^{2}) + 6(x^{3}) \stackrel{?}{=} 0 \qquad y_{2}^{*} i^{5} g_{3} u_{1}^{*} i_{5}$$

$$6x^{3} - 12x^{3} + 6x^{3} \stackrel{?}{=} 0$$

$$(0 + 6) + (0 + 1) = 0$$

0 -0

we've shown that these two functions
are solutions and one linearly independent.
Hence, they form a fundamental solution
set.
The general solution is
$$y = C, y, + Cyr$$
,
[i.e., $y = C, x^2 + C, x^3$]
(D) (B) (E) (E) (E) E OQC
September 19, 2023 18/27