September 20 Math 2306 sec. 52 Fall 2021

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

If the number m is a solution to the characteristic equation ${ }^{2}$

$$
a m^{2}+b m+c=0,
$$

then $y=e^{m x}$ is a solution to the differential equation. There are three cases for m.

[^0]
Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } \quad b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

The charaderistic equation is

$$
m^{2}+6 m+9=0
$$

This factors as $(m+3)^{2}=0$

$$
\begin{aligned}
& (m+3)= \\
& \Rightarrow m=-3
\end{aligned} \text { double root }
$$

The solutions $y_{1}=e^{-3 x}$ and $y_{2}=x e^{-3 x}$.
The general solution

$$
y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}
$$

Apply the I.C.

$$
\begin{aligned}
y^{\prime}= & -3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x} \\
y(0)= & 4=c_{1} e^{0}+c_{2} \cdot 0 e^{0} \Rightarrow \quad c_{1}=4 \\
y^{\prime}(0)=0= & -3 c_{1} e^{0}+c_{2} e^{0}-3 c_{2} \cdot 0 e^{0} \\
& -3 c_{1}+c_{2}=0 \Rightarrow c_{2}=3 c_{1}=3 \cdot 4=12
\end{aligned}
$$

The solution to the IVP

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } \quad b^{2}-4 a c<0
$$

The two roots of the characteristic equation will be

$$
m_{1}=\alpha+i \beta \text { and } m_{2}=\alpha-i \beta \text { where } i^{2}=-1 .
$$

We want our solutions in the form of real valued functions. We start by writing a pair of solutions

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

We will use the principle of superposition to write solutions y_{1} and y_{2} that do not contain the complex number i.

Deriving the solutions Case III
Recall Euler's Formula ${ }^{3}: e^{i \theta}=\cos \theta+i \sin \theta$.

$$
\begin{aligned}
& Y_{1}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
& Y_{2}=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
& \text { Let } y_{1}=\frac{1}{2} Y_{1}+\frac{1}{2} Y_{2}=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x) \\
& \text { Let } y_{2}=\frac{1}{2 i} Y_{1}-\frac{1}{2 i} Y_{2}=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

${ }^{3}$ As the sine is an odd function $e^{-i \theta}=\cos \theta-i \sin \theta$.

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c<0
$$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x) \quad \text { and } \quad y_{2}=e^{\alpha x} \sin (\beta x)
$$

The general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Example

$$
2^{n d} c^{2} d \operatorname{lin}^{2} w^{0} n=
$$

Find the general solution of $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0$.
The characteristic equation is

$$
m^{2}+4 m+6=0
$$

Using the quadratic formula

$$
\begin{aligned}
& m=\frac{-4 \pm \sqrt{4^{2}-4(1)(6)}}{2 \cdot 1}=\frac{-4 \pm \sqrt{16-24}}{2}<8=2 \sqrt{2} \\
& = \\
& m=-2 \pm i \sqrt{2} \quad \alpha \pm i \beta \quad \alpha=-2, \quad \beta=\sqrt{2} \\
& 2
\end{aligned}
$$

Hence $x_{1}=e^{-2 t} \cos (\sqrt{2} t), x_{2}=e^{-2 t} \sin (\sqrt{2} t)$
The gerecd solution

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$ for each pair of complex roots.
- It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an $n^{\text {th }}$ degree polynomial, m may be a root of multiplicity k where $1 \leq k \leq n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Example
Find the general solution of the ODE.
3rdorde, linear, nusuguerir

$$
y^{\prime \prime \prime}+y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

constant coef.

$$
m^{3}+m^{2}+4 m+4=0
$$

for 3 lin.
indef solutions y_{1}, y_{2}, y_{3}

Factor by grouping

$$
\begin{gathered}
m^{2}(m+1)+4(m+1)=0 \\
(m+1)\left(m^{2}+4\right)=0 \\
m+1=0 \Rightarrow m=-1 \quad \text { real, non repeated } \\
m^{2}+4=0 \Rightarrow m^{2}=-4 \Rightarrow m= \pm \sqrt{-4}= \pm i 2
\end{gathered}
$$

$$
m=0 \pm i 2 \quad \alpha \pm i \beta
$$

For $m=-1, \quad y_{1}=e^{-1 x}=e^{-x}$
For $m=0 \pm i 2 \quad y_{2}=e^{0 x} \cos (2 x)=\cos (2 x)$

$$
y_{3}=e^{0 x} \sin (2 x)=\sin (2 x)
$$

The general solution

$$
y=c_{1} e^{-x}+c_{2} \cos (2 x)+c_{3} \sin (2 x)
$$

Example
Find the general solution of the ODE.
$y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$
$3^{\text {rd }}$ arden, linear. honegereous constant coff.

Cheractcist.c eau is

$$
m^{3}-3 m^{2}+3 m-1=0
$$

This is $\quad(m-1)^{3}=0 \Rightarrow m=1$ triple root

$$
y_{1}=e^{x}, y_{2}=x e^{x}, y_{3}=x^{2} e^{x}
$$

The gererde solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

Example
The ODE cost Lie ar homo ogeneors $y^{(7)}-5 y^{(6)}+11 y^{(5)}-31 y^{(4)}+40 y^{(3)}-8 y^{\prime \prime}+48 y^{\prime}+144 y=0$ has characteristic polynomial

$$
\left(m^{2}+4\right)^{2}(m-3)^{2}(m+1)
$$

Determine the general solution.
The charaderirt ic equation is

$$
\left(m^{2}+4\right)^{2}(m-3)^{2}(m+1)=0
$$

For $m+1=0 \Rightarrow m=-1$ real non repeated

$$
y_{i}=e^{-x}
$$

For $(m-3)^{2}=0 \Rightarrow m=3$ double real root

$$
y_{2}=e^{3 x}, y_{3}=x e^{3 x}
$$

For $\left(m^{2}+4\right)^{2}=0 \quad m^{2}=-4 \Rightarrow m=0 \pm 2 i$ these double costs

$$
\begin{aligned}
& y_{4}=e^{0 x} \cos (2 x), y_{5}=e^{0 x} \sin (2 x) \\
& y_{6}=x e^{0 x} \cos (2 x), \quad y_{7}=x e^{0 x} \sin (2 x)
\end{aligned}
$$

The genera solution

$$
\begin{aligned}
y=c_{1} e^{-x}+c_{2} e^{3 x}+c_{3} x e^{3 x} & +c_{4} \cos (2 x)+c_{5} \sin (2 x) \\
& +c_{6} x \cos (2 x)+c_{7} \times \sin (2 x)
\end{aligned}
$$

[^0]: ${ }^{1}$ We'll extend the result to higher order at the end of this section.
 ${ }^{2}$ The expression $a m^{2}+b m+c$ is the characteristic polynomial, and the equation $a m^{2}+b m+c=0$ is called the characteristic or auxiliary equation.

