September 20 Math 2306 sec. 52 Spring 2023

Section 6: Linear Equations Theory and Terminology

We're considering $n^{\text {th }}$ order, linear equations

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \tag{1}
\end{equation*}
$$

and assuming that a_{0}, \ldots, a_{n} and g are continuous on some interval $/$ and $a_{n}(x) \neq 0$ on I.

The goal is to determine what the general solution of (1) should look like. For now, we are focused only on the homogeneous case (right side is zero)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Recall Superposition

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Theorem: The Principle of Superposition

If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval I, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on $/$ for any choice of constants c_{1}, \ldots, c_{k}.

This says that we can build new solutions from existing ones by (1) multiplying by constants and (2) adding.

Linear Dependence

Definition: Linear Dependence

A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval l if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

Definition: Linear Independence

A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly independent on an interval l if the equation

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } /
$$

is only true when $c_{1}=c_{2}=\cdots=c_{n}=0$.

Example of Linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $(-\infty, \infty)$ because

$$
c_{1} \sin (x)+c_{2} \cos (x)=0 \quad \text { for all real } x
$$

is ONLY true if $c_{1}=0$ and $c_{2}=0$.

Example of Linearly Dependent Set

In contrast, the set of functions $f_{1}(x)=x^{2}, f_{2}(x)=4 x$, and $f_{3}(x)=x-x^{2}$ is linearly dependent on $(-\infty, \infty)$ because for every real x

$$
\begin{equation*}
4 f_{1}(x)-f_{2}(x)+4 f_{3}(x)=0 \tag{2}
\end{equation*}
$$

We called the equation (2) a linear dependence relation.

Definition: Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

In the case of two functions, $\left\{y_{1}, y_{2}\right\}$, the Wronskian is

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x) .
$$

Determinant Formulas $(2 \times 2$ and 3×3)

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

with three functions, the matres will be 3×3.

$$
\begin{aligned}
w\left(f_{1}, f_{2}, f_{3}\right)(x) & =\left|\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right| \\
& =x^{2}(-8)-4 x(-4 x-2(1-2 x))+\left(x-x^{2}\right)(-8) \\
& -4 x-2+4 x \\
& =-8 x^{2}-4 x(-2)-8 x+8 x^{2} \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \quad W\left(x^{2}, 4 x, x-x^{2}\right)(x)=0
\end{aligned}
$$

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0
$$

then the functions are linearly independent on I.

We can use this as a test for linear dependence.

$$
W \neq 0 \quad \Longrightarrow \quad \text { Independent }
$$

It is possible to construct a pair of linearly independent functions whose Wronskian is zero. But such a pair can't be solutions to the same linear ODE. So for our purposes, we can say $W=0$ implies linear dependence.

Example
Determine whether the functions are linearly dependent or linearly independent on the given interval.

$$
y_{1}=x^{2}, \quad y_{2}=x^{3} \quad I=(0, \infty)
$$

We con use the Wronskian.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right| \\
& =x^{2}\left(3 x^{2}\right)-2 x\left(x^{3}\right) \\
& =3 x^{4}-2 x^{4}=x^{4}
\end{aligned}
$$

$$
W\left(x^{2}, x^{3}\right)(x)=x^{4} \neq 0
$$

Hence the functions are linearly independent

Fundamental Solution Set

We continue to consider the $n^{\text {th }}$ order, linear, homogeneous ODE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

We're ready to get at what the solution to a homogeneous linear ODE will be. First, a definition.

Definition: Fundamental Solution Set

A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Fundamental Solution Set

Theorem

If $a_{1}, a_{2}, \ldots, a_{n}$ are continuous on an interval I and $a_{n}(x) \neq 0$ for every x in I, then the homogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

possess a fundamental solution set.

So under the conditions on the coefficients that we've stated, a fundamental solution exists. The next definition tells us what the general solution to the ODE is.

General Solution of $n^{\text {th }}$ order Linear Homogeneous
 Equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{3}
\end{equation*}
$$

Definition: General Solution of Homogeneous, Linear ODE

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation (3). Then the general solution of (3) is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.
Remark: This indicates that the task of solving an $n^{\text {th }}$ order linear homogeneous ODE is to find a fundamental solution set, i.e., n, linearly independent solutions. We build the general solution by creating a linear combination.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty)
$$

and determine the general solution.
Since the ODE is $2^{\text {hd }}$ order, we hove to show that we have two, linearly independent,

Solutions.
we already showed that this pair of functions is linearly indeppandent on $(0, \infty)$.

Let's show that the are solutions.

$$
\begin{array}{ll}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \\
y_{1}=x^{2} & y_{2}=x^{3} \\
y_{1}^{\prime}=2 x & y_{2}^{\prime}=3 x^{2} \\
y_{1}^{\prime \prime}=2 & y_{2}^{\prime \prime}=6 x
\end{array}
$$

$y_{1}: \quad x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1} \stackrel{?}{=} 0$

$$
x^{2}(2)-4 x(2 x)+6\left(x^{2}\right) \stackrel{?}{=} 0
$$

$$
\begin{aligned}
y_{2}: \quad x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2} & \stackrel{?}{=} 0 \\
x^{2}(6 x)-4 x\left(3 x^{2}\right)+6\left(x^{3}\right) & \stackrel{?}{=} 0 \\
6 x^{3}-12 x^{3}+6 x^{3} & \stackrel{?}{=} 0 \\
0 & =0
\end{aligned}
$$

Since we have two, linearb ind eperdent solutions, y, and y_{2} form a fundamental solution set.

The genera solution is $y=c_{1} y+c_{2} y_{2}$.

That is, $y=c_{1} x^{2}+c_{2} x^{3}$

