September 21 Math 2306 sec. 51 Fall 2022

Section 7: Reduction of Order

- We start with a second order, linear, homogeneous ODE in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

- We know one solution y_{1}. (Keep in mind that y_{1} is a known!)
- We know there is a second linearly independent solution (section 6 theory says so).
- We try to find y_{2} by guessing that it can be found in the form

$$
y_{2}(x)=u(x) y_{1}(x)
$$

where the goal becomes finding u.

- Due to linear independence, we know that u cannot be constant.

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-\text { is known. }
$$

Suppose $y_{z}=u y, \leftarrow$ this guess is an

$$
\begin{aligned}
& y_{2}^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime} \\
& y_{2}^{\prime \prime}=u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& y_{2}^{\prime \prime}=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}
\end{aligned}
$$

We know that $y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0$.

$$
\begin{gathered}
y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0 \\
u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x) u y_{1}=0
\end{gathered}
$$

Collect $u^{\prime \prime}, u^{\prime}$, and u
u solves

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) u^{\prime}=0
$$

Let $w=u^{\prime}$, then $w^{\prime}=u^{\prime \prime}$ and w solve

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) w=0
$$

Assume $y_{1}(x) \neq 0$ on the domain, and assume $\omega>0$.

$$
w^{\prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P(x)\right) w=0
$$

1st arden linear and separable. Let's separate variables

$$
\frac{d w}{d x}=-\left(2 \frac{\frac{d y_{1}}{d x}}{y_{1}}+P(x)\right) w
$$

$$
\begin{aligned}
& \frac{1}{w} \frac{d w}{d x}=-\left(2 \frac{\frac{d y_{1}}{d x}}{y_{1}}+P(x)\right) \\
& \frac{1}{w} \frac{d w}{d x} d x=-\left(2 \frac{d y_{1} / d x}{y_{1}}+P(x)\right) d x \\
& \frac{1}{w} d w=-2 \frac{\frac{d y_{1}}{d x}}{y_{1}} d x-P(x) d x \\
& \frac{1}{w} d w=-2 \frac{d y_{1}}{y_{1}}-P(x) d x \\
& \int \frac{1}{w} d w=-2 \int \frac{d y_{1}}{y_{1}}-\int p(x) d x \\
& \ln w=-2 \ln \left|y_{1}\right|-\int p(x) d x
\end{aligned}
$$

$$
\ln w=\ln y_{1}^{-2}-\int P(x) d x
$$

Exponentiate

$$
\begin{aligned}
w & =e^{\ln y_{1}^{-2}-\int p(x) d x} \\
& =e^{\ln y_{1}^{-2}} \cdot e^{-\int p(x) d x}
\end{aligned}
$$

$$
\Rightarrow \quad w=\frac{e^{-\int p(x) d x}}{y_{1}^{2}}
$$

$$
w=u^{\prime} \Rightarrow u=\int w d x
$$

Hence

$$
u=\int \frac{e^{-\int \rho(x) d x}}{y_{1}^{2}} d x
$$

$y_{2}=4 y_{1}$ and the general solution

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the solution of the IVP where one solution of the ODE is given.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y_{1}=e^{-2 x}, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Find the general solution $y=c_{1} y_{1}+c_{2} y_{2}$
we can use reduction of arden to find $y=$.

$$
y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int \rho(x) d x}}{y_{1}^{2}} d x
$$

The $O D E$ is in standard form $P(x)=4$

$$
\begin{aligned}
-\int p(x) d x & =-\int u d x=-4 x \quad(\text { isroring }+c) \\
e^{-\int p(x) d x} & =e^{-4 x} \cdot \text { Given } y_{1}=e^{-2 x} \\
u & =\int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x=\int \frac{e^{-4 x}}{\left(e^{-2 x}\right)^{2}} d x \\
& =\int \frac{e^{-4 x}}{e^{-4 x}} d x=\int d x=x \\
y_{2} & =u y_{1}=x e^{-2 x}
\end{aligned}
$$

The several solution to the ODE is

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
$$

Apply $y(0)=1, y^{\prime}(0)=1$

$$
\begin{aligned}
& y^{\prime}=-2 c_{1} e^{-2 x}+c_{2} e^{-2 x}-2 c_{2} x e^{-2 x} \\
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}=1 \Rightarrow c_{1}=1 \\
& y^{\prime}(0)=-2 c_{1} e^{0}+c_{2} e^{0}-2 c_{2} \cdot 0 \cdot e^{0}=1 \\
& \quad-2 c_{1}+c_{2}=1 \Rightarrow c_{2}=1+2 c_{1}=1+2=3
\end{aligned}
$$

The solution to the $I V \rho$ is $y=e^{-2 x}+3 x e^{-2 x}$

