September 21 Math 2306 sec. 51 Fall 2022

Section 7: Reduction of Order

We start with a second order, linear, homogeneous ODE in standard form

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0.$$

- We know one solution y₁. (Keep in mind that y₁ is a known!)
- We know there is a second linearly independent solution (section 6 theory says so).
- We try to find y_2 by guessing that it can be found in the form

$$y_2(x) = u(x)y_1(x)$$

September 19, 2022

1/40

where the goal becomes finding *u*.

Due to linear independence, we know that u cannot be constant.

Generalization

Consider the equation **in standard form** with one known solution. Determine a second linearly independent solution.

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0, \quad y_1(x) - \text{is known.}$$
Suppose
$$\begin{array}{l} y_z = uy, \quad \leftarrow \quad \text{Mis guess is an} \\ y_z' = u'y, + uy', \quad & \text{ansatz} \\ y_z'' = u''y, + u'y', + u'y', + uy', \\ y_z'' = u''y, + zu'y', + uy', \\ \end{array}$$
We know that
$$\begin{array}{l} y_1'' + P(x)y_1' + Q(x)y_1 = 0. \end{array}$$

イロン イボン イヨン 一日

$$y_{z}'' + P(x)y_{z}' + Q(x)y_{z} = 0$$

$$u''y_{1} + zu'y_{1}' + uy_{1}'' + P(x)(u'y_{1} + uy_{1}') + Q(x)uy_{1} = 0$$

Collect u'', u', and u

$$y_{1}u'' + (zy_{1}' + P(x)y_{1})u' + (y_{1}'' + P(x)y_{1}' + Q(x)y_{1})u = 0$$

Since the
y_{1}sdies the
y_{1}sdies the

$$y_{1}u'' + (zy_{1}' + P(x)y_{1})u' = 0$$

< □ ▶ < 圕 ▶ < 클 ▶ < 클 ▶ ミ ジ へ (?) September 19, 2022 3/40 Let w= u', then w'= u' and w solve $y_1 w' + (zy_1' + P(x_1y_1))w = 0$ Assume y, (x) = 0 on the domain, and assume W >0. $w' + \left(\left(\frac{y_1'}{y_1} + P(x) \right) \right) w = 0$

1st orden linear and separable. Let's separate variables $\frac{dW}{dx} = -\left(2\frac{dy}{y} + P(x)\right)W$

イロト イ理ト イヨト イヨト 二臣

$$\frac{1}{w} \frac{dw}{dx} = -\left(2 \frac{dy_{1}}{dx} + P(x)\right)$$

$$\frac{1}{w} \frac{dw}{dx} dx = -\left(2 \frac{dy_{1}}{y_{1}} + P(x)\right) dx$$

$$\frac{1}{w} dw = -2 \frac{dy_{1}}{y_{1}} dx - P(x) dx$$

$$\frac{1}{w} dw = -2 \frac{dy_{1}}{y_{1}} - P(x) dx$$

$$\int \frac{1}{w} dw = -2 \int \frac{dy_{1}}{y_{1}} - \int P(x) dx$$

$$\int \frac{1}{w} dw = -2 \int \frac{dy_{1}}{y_{1}} - \int P(x) dx$$

$$\int w dw = -2 \int \frac{dy_{1}}{y_{1}} - \int P(x) dx$$

$$\int w dw = -2 \int \frac{dy_{1}}{y_{1}} - \int P(x) dx$$

$$\int w dw = -2 \int \frac{dy_{1}}{y_{1}} - \int P(x) dx$$

$$\int w dw = -2 \int \frac{dy_{1}}{y_{1}} - \int P(x) dx$$

$$\int w dw = -2 \int \frac{dy_{1}}{y_{1}} - \int P(x) dx$$

$$Jh W = Jn y_{1}^{2} - \int P(x) dx$$

$$\Rightarrow W = \underbrace{C}_{y_{1}^{2}}$$

w=u' ⇒ u= ∫wdx

<ロ> <四> <四> <三> <三> <三> <三</td>

dence
$$u = \int \frac{-\int p \omega dx}{y_i^2} dx$$

 $y_2 = uy_i$ and the seneral solution
 $y = C_i y_i + C_2 y_2$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_1 , a second linearly independent solution y_2 is given by

$$y_2 = y_1(x) \int \frac{e^{-\int P(x) \, dx}}{(y_1(x))^2} \, dx$$

September 19, 2022 10/40

Example

Find the solution of the IVP where one solution of the ODE is given.

$$y'' + 4y' + 4y = 0$$
 $y_1 = e^{-2x}$, $y(0) = 1$, $y'(0) = 1$
Find the general solution $y = C_1y_1 + C_2y_2$
we can use reduction of order to find y_2 .
 $y_2 = Uy_1$, where $U = \int \frac{-SP(x)dx}{y_1^2} dx$

The ODE is in standard form P(x) = 4

September 19, 2022 11/40

э

イロト イポト イヨト イヨト

-JP(x)dx -4x Given y,= e

$$u = \int \frac{e^{-\int P(x) dx}}{y_i^2} dx = \int \frac{e^{-4x}}{(e^{2x})^2} dx$$

$$= \int \frac{e^{-4x}}{e^{-4x}} dx = \int dx = x$$

< □ ▶ < ⊡ ▶ < Ξ ▶ < Ξ ▶ Ξ
 September 19, 2022

12/40

$$y = C_{1} e^{2x} + C_{2} \times e^{2x}$$
Apply $y_{(0)} = 1$, $y_{1}^{'}(0) = 1$

$$y_{1}^{'} = -2C_{1} e^{2x} + C_{2} e^{2x} - 2C_{2} \times e^{2x}$$

$$y_{(0)} = C_{1} e^{2x} + C_{2} e^{2x} - 2C_{2} \times e^{2x}$$

$$y_{(0)} = -2C_{1} e^{2x} + C_{2} e^{2x} - 2C_{2} \cdot 0 \cdot e^{2x} = 1$$

$$y_{1}^{'}(0) = -2C_{1} e^{2x} + C_{2} e^{2x} - 2C_{2} \cdot 0 \cdot e^{2x} = 1$$

$$-2C_{1} + C_{2} = 1 \Rightarrow C_{2} = 1 + 2C_{1} = 1 + 2 = 3$$
The solution to the IVP is $y = e^{2x} + 3x e^{2x}$

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● つへで
September 19, 2022 13/40