September 22 Math 2306 sec. 51 Spring 2023

Section 6: Linear Equations Theory and Terminology

We continue to consider the $n^{\text {th }}$ order, linear, homogeneous ODE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Definition: Fundamental Solution Set

A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

General Solution of $n^{\text {th }}$ order Linear Homogeneous
 Equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{1}
\end{equation*}
$$

Assume that a_{0}, \cdots, a_{n} are continuous on some interval $/$ and that $a_{n}(x) \neq 0$ for x in I.

Definition: General Solution of Homogeneous, Linear ODE

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation (1). Then the general solution of (1) is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Nonhomogeneous Equations

Now we turn our attention to nonhomogeneous equations. We will consider the equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{2}
\end{equation*}
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation of (2) is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 .
$$

This equation has the same left hand side as (2). It's simply the homogeneous version of (2).

Definition: General Solution of Nonhomogeneous, Linear ODE

Let y_{p} be any solution of the nonhomogeneous equation (2), and let $y_{1}, y_{2}, \ldots, y_{n}$ be any fundamental solution set of the associated homogeneous equation.
Then the general solution of the (2) is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Note the format

$$
y=\underbrace{c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)}_{y_{c}}+\underbrace{y_{p}(x)}_{y_{p}}
$$

Another Superposition Principle

Consider the nonhomogeneous equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{1}(x)+g_{2}(x) \tag{3}
\end{equation*}
$$

Theorem: Superposition Principle Nonhomogeneous ODE

Theorem: If $y_{p_{1}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)
$$

and $y_{p_{2}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{2}(x)
$$

then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

is a particular solution for the nonhomogeneous equation (3).

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
We will construct the general solution by considering sub-problems.
(a) Part 1 Verify that

$$
\begin{aligned}
& y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36 . \\
& y_{p_{1}}{ }^{\prime}=0 \\
& y_{p_{1}}{ }^{\prime \prime}=0 \\
& x^{2} y_{p_{1}}{ }^{\prime \prime}-4 x y_{p_{1}}{ }^{\prime}+6 y_{p_{1}} \stackrel{?}{=} 36 \\
& x^{2}(0)-4 x(0)+6(6) \stackrel{?}{=} 36 \\
& 36=36 \\
& \text { so } y_{p} \text { soles } \\
& x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36
\end{aligned}
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Part 2 Verify that

$$
\begin{aligned}
& y_{p_{2}}=-7 x \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x . \\
& y_{p_{2}}^{\prime}=-7 \quad x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}} \stackrel{?}{=}-14 x \\
& y_{p_{2}}{ }^{\prime \prime}=0 \\
& x^{2}(0)-4 x(-7)+6(-7 x) \stackrel{?}{=}-14 x \\
& 28 x-42 x \stackrel{?}{=}-14 x \\
& -14 x=-14 x
\end{aligned}
$$

$$
\text { So } y p_{2}=-7 x \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Part 3 We already know that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

$$
\begin{aligned}
y=y_{c}+y_{p} \quad \text { and } \quad \begin{aligned}
y_{c} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} x^{2}+c_{2} x^{3} \\
y_{p}=y_{p_{1}}+y_{p_{2}} & y_{p}
\end{aligned}=6-7 x
\end{aligned}
$$

The general solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=5
$$

The general solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Apply the I.C.

$$
\begin{gathered}
y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7 \\
y(1)=c_{1}(1)^{2}+c_{2}(1)^{3}+6-7(1)=0 \quad \Rightarrow \quad c_{1}+c_{2}=1 \\
y^{\prime}(1)=2 c_{1}(1)+3 c_{2}(1)^{2}-7=5 \quad \Rightarrow \quad 2 c_{1}+3 c_{2}=12
\end{gathered}
$$

Solve the system

$$
\text { 2 tins }\left\{\begin{array}{l}
c_{1}+c_{2}=1 \\
2 c_{1}+3 c_{2}=12 \\
2 c_{1}+2 c_{2}=2 \\
\text { subtroded } \\
c_{2}=10 \quad c_{1}=1-c_{2}=1-10=-9 \\
* \quad 2(-9)+3(10)_{=}^{=} 12 \quad-18+30=12
\end{array}\right.
$$

The solution to the Initial Value problem is

$$
y=-9 x^{2}+10 x^{3}+6-7 x
$$

