## September 22 Math 2306 sec. 54 Fall 2021

## Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where $g$ comes from the restricted classes of functions

- polynomials,
- exponentials, $e^{m x}$ m-number
- sines and/or cosines, $\sin (k x), \cos (k x)$
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example ${ }^{1}$
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

The left is constant well. and the right side is a polynomid.
were focused on $y_{p}$, but ye would solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

Note $g(x)=8 x+1$ is a $1^{\text {st }}$ degree polynomid. we assume that $y p$ is also. a $1^{\text {st }}$ degree polynomid.

$$
y_{p}=A x+B \text { fur constant } A+B
$$

${ }^{1}$ We're only ignoring the $y_{c}$ part to illustrate the process.
we sub this into $y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1$

$$
\begin{array}{ll}
y_{p}=A x+B & 0-4(A)+4(A x+B)=8 x+1 \\
y_{p}^{\prime}=A & \\
y_{p}^{\prime \prime}=0 & 4 A x+(-4 A+4 \beta)=8 x+1
\end{array}
$$

we con match coefficients

$$
4 A x+(-4 A+4 B)=\underline{\underline{8 x}}+\underline{=}
$$

This requires

$$
\begin{gathered}
4 A=8 \\
-4 A+4 B=1
\end{gathered}
$$

Solving $\quad A=2$

$$
4 B=1+4 A \Rightarrow B=\frac{1}{4}+A=\frac{1}{4}+2=\frac{9}{4}
$$

The particular solution is

$$
y_{p}=2 x+\frac{9}{4}
$$

The general solution wald be $y_{c}+y_{p}$ with this $y_{p}$.

The Method: Assume $y_{p}$ has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

Constant coef. left and exporentid right side.

$$
g(x)=6 e^{-3 x} \text { a constant times } e^{-3 x}
$$

Assume $y_{p}=A e^{-3 x}$. Sub this in

$$
\begin{gathered}
y_{p}^{\prime}=-3 A e^{-3 x} \\
y_{p}^{\prime \prime}=9 A e^{-3 x} \\
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{-3 x}
\end{gathered}
$$

$$
\begin{array}{r}
9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4 A e^{-3 x}=6 e^{-3 x} \\
25 A e^{-3 x}=6 e^{-3 x}
\end{array}
$$

This requires $25 A=6 \Rightarrow A=\frac{6}{25}$

Hence $y_{p}=\frac{6}{25} e^{-3 x}$

Make the form general

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

The left is constant coefficient and the right is a polynomid.

Note that $g(x)=16 x^{2}$ is a monomid and a polynomial.
suppose we assume $y_{p}=A x^{2}$ (his wing)
Substitute $y_{p}=A x^{2}$

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x)+4 A x^{2}=16 x^{2} \quad z_{i}^{r o} \\
& 4 A x^{2}-8 A x+2 A=16 x^{2}+0 x+0
\end{aligned}
$$

Matching gives

$$
\begin{aligned}
& 4 A=16 \\
& \text { not } \\
&-8 A=0 \text { posing } \\
& 0 \neq 0 \\
& 2 A=0
\end{aligned}
$$

The correct way to view $g(x)=16 x^{2}$ is as a $2^{\text {nd }}$ degree pulynomid. Then ass ume $y_{p}$ is also a $z^{\text {nd }}$ degree polynomid.

$$
y_{\rho}=A x^{2}+B x+C
$$

sub

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
\end{aligned}
$$

Matching gives

$$
\begin{aligned}
4 A & =16 \\
-8 A+4 B & =0 \\
2 A-4 B+4 C & =0
\end{aligned}
$$

Solving $\quad A=4$

$$
\begin{aligned}
& 4 B=8 A \Rightarrow B=2 A=8 \\
& 4 C=4 B-2 A \Rightarrow C=B-\frac{1}{2} A=8-\frac{1}{2}(4)=6
\end{aligned}
$$

Hence

$$
y_{p}=4 x^{2}+8 x+6
$$

## General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If we assume that $y_{p}=A \sin (2 x)$, taking two derivatives would lead to the equation

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
$$

This would require (matching coefficients of sines and cosines)

$$
-4 A=20 \quad \text { and } \quad-2 A=0
$$

This is impossible as it would require $-5=0$ !

## General Form: sines and cosines

We must think of our equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$ as

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

The correct format for $y_{p}$ is

$$
y_{p}=A \sin (2 x)+B \cos (2 x)
$$

Examples of Forms of $y_{p}$ based on $g$ (Trial Guesses)
(a) $g(x)=1$ (or really any constant)
zero degree polynomial

$$
y_{p}=A
$$

(b) $g(x)=x-7$
lIst degree polynorid

$$
y_{p}=A x+B
$$

Examples of Forms of $y_{p}$ based on $g$ (Trial Guesses)
(c) $g(x)=5 x^{2}$
$2^{\text {nd }}$ degree pulsnoniial

$$
y_{p}=A x^{2}+B x+C
$$

(d) $g(x)=3 x^{3}-5$
$3^{\text {rd }}$ degree polynomid

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

We'll pick this up on Friday.

