September 23 Math 2306 sec. 51 Fall 2022

Section 8: Homogeneous Equations with Constant Coefficients

 We consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

If we put this in normal form, we get

$$
\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \frac{d y}{d x}-\frac{c}{a} y .
$$

Question: What sorts of functions y could be expected to satisfy

$$
\begin{aligned}
& y^{\prime \prime}=\text { (constant) } y^{\prime}+\text { (constant) } y ? \\
& y=e^{m x} m \text {-constant } \operatorname{sines} / \cos \text { ines }
\end{aligned}
$$

${ }^{1}$ We'll extend the result to higher order at the end of this sectionȘeptember 21, 2022

We look for solutions of the form $y=e^{m x}$ with m constant.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

If $y=e^{m x}, y^{\prime}=m e^{m x}$ and $y^{\prime \prime}=m^{2} e^{m x}$.
Substitute

$$
\begin{aligned}
& a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c e^{m x}=0 \\
& e^{m x}\left(a m^{2}+b m+c\right)=0
\end{aligned}
$$

This holds for all x in some interval.
This will be true if m satisfies

$$
a m^{2}+b m+c=0
$$

$y=e^{m x}$ wIll solves the ODE if the number m solves this quadratic equation.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Example
Find the general solution of the ODE.

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

The oDe is homogeneous wal constant coefficients.

The Characteristic equation is

$$
m^{2}-2 m-2=0
$$

Find the roots. Completing the square

$$
\underbrace{m^{2}-2 m+1}_{\text {perfect square }}-1-2=0
$$

$$
\begin{aligned}
& (m-1)^{2}-3=0 \Rightarrow(m-1)^{2}=3 \\
& m-1= \pm \sqrt{3} \Rightarrow m=1 \pm \sqrt{3}
\end{aligned}
$$

we have two different red roots

$$
m_{1}=1+\sqrt{3}, \quad m_{2}=1-\sqrt{3}
$$

A fundamental solution set is

$$
y_{1}=e^{(1+\sqrt{3}) x}, y_{2}=e^{(1-\sqrt{3}) x}
$$

The genera solution is

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0
$$

There is only one real, double root, $m=\frac{-b}{2 a}$.
Use reduction of order to find the second solution to the equation (in standard form)

$$
\begin{array}{ll}
y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 & \text { given one solution } y_{1}=e^{-\frac{b}{2 a} x} \\
y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} d x
\end{array}
$$

Here $P(x)=\frac{b}{a}, e^{-\int P(x) d x}=e^{-\int \frac{b}{a} d x}=e^{-\frac{b}{a} x}$

$$
\begin{gathered}
\left(y_{1}\right)^{2}=\left(e^{\frac{-b}{2 a} x}\right)^{2}=e^{-\frac{2 b}{2 a} x}=e^{\frac{-b}{a} x} \\
u=\int \frac{e^{\frac{-b}{a} x}}{e^{\frac{b}{a} x}} d x=\int d x=x \\
\Rightarrow y_{2}=x e^{\frac{-b}{2 a} x}
\end{gathered}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } \quad b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c<0
$$

The two roots of the characteristic equation will be

$$
\begin{equation*}
m_{1}=\alpha+i \beta \text { and } m_{2}=\alpha-i \beta \text { where } i^{2}=-1 . \tag{>0}
\end{equation*}
$$

We want our solutions in the form of real valued functions. We start by writing a pair of solutions

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

We will use the principle of superposition to write solutions y_{1} and y_{2} that do not contain the complex number i.

Deriving the solutions Case III
Recall Euler's Formula ${ }^{2}: e^{i \theta}=\cos \theta+i \sin \theta$.

$$
\begin{aligned}
Y_{1}=e^{\alpha x} e^{i \beta x} & =e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
Y_{2}=e^{\alpha x} e^{-i \beta x} & =e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
Y_{1} & =e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
Y_{2} & =e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Set $y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)$ and $y_{2}=\frac{1}{z_{i}}\left(Y_{1}-Y_{2}\right)$
${ }^{2}$ As the sine is an odd function $e^{-i \theta}=\cos \theta-i \sin \theta$.

$$
\begin{aligned}
& y_{1}=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x) \\
& y_{2}=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

The fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x), y_{2}=e^{\alpha x} \sin (\beta x)
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c<0
$$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x) \quad \text { and } \quad y_{2}=e^{\alpha x} \sin (\beta x)
$$

The general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

