September 23 Math 2306 sec. 53 Fall 2024

Section 7: Reduction of Order

We start with a second order, linear, homogeneous ODE in
standard form

Py
P 1 ay =
> We know one solution y;. (Keep in mind that y; is a known!)

> We try to find a second linearly independent solution y, by
guessing that it can be found in the form

Ya(x) = u(x)y1(x)
where the goal becomes finding u.

Due to linear independence, we know that v cannot be
constant.




Generalization

Consider the equation in standard form with one known solution.
Determine a second linearly independent solution.

e + P(x)a + Q(x)y =0, yy(x) —is known.
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+ P(x)% +Q(x)y =0

Reduction of Order Formula

For the second order, homogeneous equation in standard
form with one known solution yy, a second linearly inde-
pendent solution y» is given by

e—fP(x) dx
Yo(x) = yi(x)u(x) where u(x) = /de




Example

Find the general solution of the differential equation for which one
solution is known.

X2y" +xy'+y =0, x>0, yi(x)=cos(Inx)
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Example

Find the solution of the IVP where one solution of the ODE is given.
y'+4y +4y=0 y1=e2, y(0)=1, y(0)=1
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