September 24 Math 2306 sec. 51 Fall 2021

Section 9: Method of Undetermined Coefficients

We were considering linear, constant coefficient, nonhomogeneous ODEs

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, e.g. e^{kx}

k-constant

- ► sines and/or cosines, e.g. sin(kx) or cos(kx)
- and products and sums of the above kinds of functions

At first, we are looking at the y_p part. The general solution will be $y = y_c + y_p$.

Method of Undetermined Coefficients

This is a method for finding a particular solution to

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

by assuming that y_p is the same kind of function as g. We

- Determine what type of function g is,
- set up a guess for y_p of this form with unspecified constant coefficients,
- substitute our guess into the ODE,
- and then solve a system of equations for the coefficients by matching like terms.

Examples of Forms of y_p based on g (Trial Guesses)

$$a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_{0}y = g(x)$$
(e) $g(x) = xe^{3x}$

$$|S^{+}| \text{ degree polynomial times } e^{3x}$$

$$|S^{+}| \text{ degree polynomial times } e^{3x}$$

$$|S^{+}| \text{ degree } Polynomial \text{ times } e^{3x}$$

(f)
$$g(x) = \cos(7x)$$
 Linear combo of $\sin(7x) + \cos(7x)$

$$y = A \cos(7x) + B \sin(7x)$$

Examples of Forms of y_p based on g (Trial Guesses)

(g)
$$g(x) = \sin(2x) - \cos(4x)$$

Linear combos of Sun(2x) and Cos(2x) and

Sin(4x) and Cos(4x)

$$y_{\rho} = A \cos(2x) + B \sin(2x) + C \cos(4x) + D \sin(4x)$$
(h) $g(x) = x^2 \sin(3x)$
 $2^{nd} \cdot degree poly times Sin(3x) and Cos(3x)$

$$y_{\rho} = (A x^2 + B x + C) Sin(3x) + (Dx^2 + Ex + F) Cos(3x)$$

Examples of Forms of y_p based on g (Trial Guesses)

(j)
$$g(x) = xe^{-x}\sin(\pi x)$$
 | St degree poly times e^{-x} times linear combo of Sin(TX) and Cos(TX)

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x)$

$$y_{p_2}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_2(x),$

and so forth.

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

be can break this into two problems

$$y'' - 4y' + 4y = 6e^{-3x}$$

9,(x)= 6=3x

For
$$g_{1}(x) = 6e^{3x}$$
, $y_{p_{1}} = Ae^{3x}$
For $g_{2}(x) = 16x^{2}$, $y_{p_{2}} = Bx^{2} + Cx + D$
Then $y_{p} = Ae^{3x} + Bx^{2} + Cx + D$

Using the rosults from Wednesdays (9|22/21). wed find $y_{e} = \frac{6}{75} e^{3x} + 4x^{2} + 8x + 6$

8/26

A Glitch!

$$y'' - y' = 3e^x$$

Constant coef light, Expinents all right.

 $g(x) = 3e^x$ constant times e^x

Set $yp = Ae^x$
 $yp = Ae^x$
 $yp = Ae^x$
 $yp = Ae^x$

yp" = Aě

We need $y_p'' - y_p' = 3e^x$ $Ae^x - Ae^x = 3e^x$ $0 = 3e^x$

There is no choice of A for which this is true.

The problem is that our guess for yp matches at least some term from yo.

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case I: The guess for y_{p_i} **DOES NOT** have any like terms in common with y_c .

Then our guess for y_{p_i} will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case II: The guess for y_{ρ_i} **DOES** have a like term in common with y_c .

Then we multiply our guess at y_{p_i} by x^n where n is the smallest positive integer such that our new guess $x^n y_{p_i}$ does not have any like terms in common with y_c . Then we take this new guess and substitute to find the A, B, etc.

Case II Examples

Find the general solution of the ODE.

$$y''-2y'+y=-4e^x$$

The left is constant coef, and the right is

an exponential.

The characteristic egr is

$$(m-1)^2=0 \Rightarrow m=1$$
 double

Now find Mp: g(x) = - 4e constant ex.

Start w $y_p = Ae^{\times} \times \text{matcher } y_1$ matchs $y_p = (Ae^{\times}) \times = A \times e^{\times} \times \text{matcher } y_2$ again $y_p = (Ae^{\times}) \times = A \times e^{\times} \times e^{\times}$ $y_p = (Ae^{\times}) \times = A \times e^{\times} \times e^{\times}$

Sub into. $y_p'' - 2y_p' + y_p = -4e^{x}$ $y_p = Ax^2e^{x}$ $y_i' = Ax^2e^{x} + 2Axe^{x}$ $y_n'' = Ax^2e^{x} + 2Axe^{x} + 2Axe^{x} + 2Axe^{x}$ $= Ax^2e^{x} + 4Axe^{x} + 2Axe^{x}$

$$\frac{1-2A+A)+xe(9A-9A)+O(x)}{0}$$

$$QAe^{x}=-4e^{x}$$

$$y = c, e + c_2 \times e - 2 \times e$$