September 24 Math 2306 sec. 51 Fall 2021

Section 9: Method of Undetermined Coefficients

We were considering linear, constant coefficient, nonhomogeneous ODEs

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, e.g. $\mathbf{e}^{k x}$
- sines and/or cosines, e.g. $\boldsymbol{\operatorname { s i n }}(\mathbf{k x})$ or $\boldsymbol{\operatorname { c o s } (\mathbf { k x })}$
- and products and sums of the above kinds of functions

At first, we are looking at the y_{p} part. The general solution will be $y=y_{c}+y_{p}$.

Method of Undetermined Coefficients

This is a method for finding a particular solution to

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

by assuming that y_{p} is the same kind of function as g. We

- Determine what type of function g is,
- set up a guess for y_{p} of this form with unspecified constant coefficients,
- substitute our guess into the ODE,
- and then solve a system of equations for the coefficients by matching like terms.

Examples of Forms of y_{p} based on g (Trial Guesses)

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

(e) $g(x)=x e^{3 x} \quad$ st $^{\text {st }}$ degree polynomid times $e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x}=A x e^{3 x}+B e^{3 x}
$$

(f) $g(x)=\cos (7 x)$ Linear combo of $\sin (7 x)+\cos (7 x)$

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(g) $g(x)=\sin (2 x)-\cos (4 x)$

Linear combos of $\sin (2 x)$ and $\cos (2 x)$ and $\sin (4 x)$ and $\cos (4 x)$

$$
y_{p}=A \cos (2 x)+B \sin (2 x)+C \cos (4 x)+D \sin (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x)$ $2^{\text {nd }}$ - desire poly times $\sin (3 x)$ and $\cos (3 x)$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(i) $g(x)=e^{x} \cos (2 x) \quad e^{x}$ times linear combo of $\cos (2 x)$ and $\sin (2 x)$

$$
y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)
$$

(j) $g(x)=x e^{-x} \sin (\pi x)$ is degree poly times e^{-x} times linear combs of $\sin (\pi x)$ ard $\cos (\pi x)$

$$
y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

The Superposition Principle

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_{p} by considering separate problems

$$
\begin{aligned}
& y_{p_{1}} \text { solves } a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x) \\
& y_{p_{2}} \text { solves } a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{2}(x)
\end{aligned}
$$

and so forth.
Then $y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}$.

The Superposition Principle
Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

we con break this into two problems
Find y_{p}, that solves

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x} \quad s_{1}(x)=6 e^{-3 x}
$$

and Find $y_{p_{2}}$ that solver

$$
y^{\prime \prime}-4 y+4 y=16 x^{2} \quad g_{z}(x)=16 x^{2}
$$

For $g(x)=6 e^{-3 x}, y_{p_{1}}=A e^{-3 x}$
For $g_{2}(x)=16 x^{2}, \quad y_{p_{2}}=B x^{2}+C x+D$
Then $y_{p}=A e^{-3 x}+B x^{2}+C x+D$

Using the results from Wodnes dar $(9122 / 21)$ wed find

$$
y_{p}=\frac{6}{25} e^{-3 x}+4 x^{2}+8 x+6
$$

A Glitch!

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

Constant coet lye, Expineaticl right.

$$
g(x)=3 e^{x} \quad \text { constant times } e^{x}
$$

Set $y_{p}=A e^{x}$
Trying to find A :

$$
\begin{aligned}
& y_{p}=A e^{x} \\
& y_{p}^{\prime}=A e^{x} \\
& y_{p}^{\prime \prime}=A e^{x}
\end{aligned}
$$

we need

$$
\begin{aligned}
y_{p}^{\prime \prime}-y_{p}^{\prime} & =3 e^{x} \\
A e^{x}-A e^{x} & =3 e^{x} \\
0 & =3 e^{x}
\end{aligned}
$$

There is no choice of A for which this is true.

The problem is that our guess for Ip matches at least some term from y_{c}.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case I: The guess for $y_{p_{i}}$ DOES NOT have any like terms in common with y_{c}.

Then our guess for $y_{p_{i}}$ will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case II: The guess for $y_{p_{i}}$ DOES have a like term in common with y_{c}.
Then we multiply our guess at $y_{p_{i}}$ by x^{n} where n is the smallest positive integer such that our new guess $x^{n} y_{p_{i}}$ does not have any like terms in common with y_{c}. Then we take this new guess and substitute to find the A, B, etc.

Case II Examples
Find the general solution of the ODE.

$$
y=y_{c}+y_{p}
$$

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

The left is constant coef. and the right is an exponentid.

Find $y c$: solve $y^{\prime \prime}-2 y^{\prime}+y=0$
The characteristic eq is

$$
\begin{gathered}
m^{2}-2 m+1=0 \\
(m-1)^{2}=0 \Rightarrow m=1 \begin{array}{c}
\text { double } \\
\text { root }
\end{array} \\
y_{1}=e^{x}, y_{2}=x e^{x} \quad y_{c}=c_{1} e^{x}+c_{2} x e^{x}
\end{gathered}
$$

Now find $y_{p}: \quad g(x)=-4 e^{x}$ constant er e^{x}.
Start wi $y_{p}=A e^{x} x$ matches y_{1}
modify $y_{p}=\left(A e^{x}\right) x=A x e^{x} x$ mother
again $\quad y_{p}=\left(A e^{x}\right) x^{2}=A x^{2} e^{x / \sqrt{D o s i n t ~ m a d ~ o h ~}}$
Sub into. $y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=-4 e^{x}$

$$
\begin{aligned}
y_{p} & =A x^{2} e^{x} \\
y_{p}^{\prime} & =A x^{2} e^{x}+2 A x e^{x} \\
y_{p}^{\prime \prime} & =A x^{2} e^{x}+2 A x e^{x}+2 A x e^{x}+2 A e^{x} \\
& =A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}
\end{aligned}
$$

September 22, $2021 \quad 15 / 26$

$$
A x^{2} e^{x}+4 A x e^{x}+2 A \underline{e}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
$$

Collect $x^{2} e^{x}, x e^{x}, e^{x}$

$$
\begin{aligned}
x^{2} e^{x} \frac{(A-2 A+A)}{\prime \prime}+x e^{x} \frac{(4 A-4 A)}{\prime \prime}+e^{x} \underline{(2 A)} & =-4 e^{x} \\
2 A e^{x} & =-4 e^{x} \\
2 A & =-4 \Rightarrow A
\end{aligned}
$$

So $y_{p}=-2 x^{2} e^{x}$ and the genera solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

