September 24 Math 2306 sec. 52 Fall 2021

Section 9: Method of Undetermined Coefficients

We were considering linear, constant coefficient, nonhomogeneous ODEs

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- ► exponentials, e.g. e^{kx} k-constant
- sines and/or cosines, e.g. sin(kx) or cos(kx)
- and products and sums of the above kinds of functions

At first, we are looking at the y_p part. The general solution will be $y = y_c + y_p$.

イロト 不得 トイヨト イヨト ヨー ろくの

Method of Undetermined Coefficients

This is a method for finding a particular solution to

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

by assuming that y_p is the same kind of function as g. We

- Determine what type of function g is,
- set up a guess for y_p of this form with unspecified constant coefficients,
- substitute our guess into the ODE,
- and then solve a system of equations for the coefficients by matching like terms.

Examples of Forms of y_p based on g (Trial Guesses)

$$a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_{0}y = g(x)$$
(e) $g(x) = xe^{3x}$

$$\int_{a}^{a} \int_{a}^{b} degree polynomial times e^{3x}$$

$$\int_{a}^{b} \int_{a}^{a} \int_{a}^{b} \int_{a}^{a} \int_{a}^{b} \int_{a}^{a} \int_{a}^{b} \int_{a}^{a} \int_{a}^{b} \int_{a}^$$

September 22, 2021 3/26

<ロト <回 > < 回 > < 回 > < 回 > … 回

Examples of Forms of y_p based on g (Trial Guesses)

(g)
$$g(x) = \sin(2x) - \cos(4x)$$

Linker combos of Sin(2x), Cos(2x) and Sin(4x), Cos(4x)

$$y_{p} = ASin(2x) + BCos(2x) + CSin(4x) + DCos(4x)$$

September 22, 2021 4/26

イロト 不得 トイヨト イヨト 二日

Examples of Forms of y_p based on g (Trial Guesses)

(i)
$$g(x) = e^x \cos(2x)$$
 Linear can be of $e^x \operatorname{Cas}(2x)$
and $e^x \operatorname{Sin}(2x)$

 $y_p = A e^{X} C_{r}(z_X) + B e^{X} Sin(z_X)$

(j)
$$g(x) = xe^{-x}\sin(\pi x)$$
 Linear combe of 1st degree
poly times $\stackrel{\times}{e}$ times $\sin(\pi x)$ and $\cos(\pi x)$

 $y_{P} = (A \times + B) e^{-x} S_{in}(\pi \times) + (C \times + D) e^{-x} C_{os}(\pi \times)$

September 22, 2021 5/26

イロト 不得 トイヨト イヨト 二日

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x) + \dots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x)$
 y_{p_2} solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_2(x)$,
and so forth.

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

We can consider two problems.

Find
$$y_{P_1}$$
 that solves
 $y'' - 4y' + 4y = 6e^{3x}_{P_1} g_1(x) = 6e^{3x}_{P_2}$

イロト 不得 トイヨト イヨト

For
$$g_1(x) = 6e^{3x}$$
, $yp_1 = Ae^{3x}$
For $g_2(x) = 16x^2$, $yp_2 = Bx^2 + Cx + D$
Then $yp = Ae^{3x} + Bx^2 + Cx + D$
 $g_1z_1z_1$
From we heres day, we'd find that
 $yp = \frac{6}{25}e^{3x} + 4x^2 + 8x + 6$

September 22, 2021 8/26

・ロン ・御と ・ヨン ・ヨン 三日

A Glitch!

$$y'' - y' = 3e^{x}$$

Constat coef. left and exponential right.
 $g(x) = 3e^{x}$ a constant times e^{x}
Let $y_{P} = Ae^{x}$. Sub this into the ODE
 $y_{P}' = Ae^{x}$
We need $y_{P}'' - y_{P}' = 3e^{x}$

$$Ae^{\times} - Ae^{\times} = 3e^{\times}$$

 $0 = 3e^{\times}$

September 22, 2021 10/26

・ロト ・個ト ・ヨト ・ヨト 一里

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the *g*'s, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case I: The guess for y_{p_i} **DOES NOT** have any like terms in common with y_c .

Then our guess for y_{p_i} will work as written. We do the substitution to find the *A*, *B*, etc.

September 22, 2021

12/26

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g_1(x) + \dots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case II: The guess for y_{p_i} **DOES** have a like term in common with y_c .

Then we multiply our guess at y_{p_i} by x^n where *n* is the smallest positive integer such that our new guess $x^n y_{p_i}$ does not have any like terms in common with y_c . Then we take this new guess and substitute to find the *A*, *B*, etc.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ

Case II Examples

.

Find the general solution of the ODE.

$$y'' - 2y' + y = -4e^{x}$$

Let's find yc first: yc solves $y'' - zy' + y = 0$

$$y'' = zy' - y$$

The chara decistic equation is
 $M^{2} - Zm + 1 = 0$
 $(m - 1)^{2} = 0 \implies m = 1$ double
 $mont$
 $y_{1} = e^{x}$, $y_{2} = x e^{x}$
 $y_{c} = c_{1}e^{x} + (z \times e^{x})$

September 22, 2021 14/26

Find
$$y_{P}$$
: $g(x) = -4e^{x}$ constant time e^{x}
Sol $y_{P} = Ae^{x} X$ has like term in
commons of y_{C}
Modify $y_{P} = (Ae^{x})x = Axe^{x} X$ still
 $y_{P} = (Ae^{x})x^{2} = Axe^{x} X$ matcher
 y_{C}
 $y_{P} = (Ae^{x})x^{2} = Axe^{x} X$ for y_{C}

Sub into the ODE

$$y_{p}'' - zy_{p}' + y_{p} = -4e^{2}$$

$$y_{p} = A x^{2} e^{2}$$

$$y_{p}'' = A x^{2} e^{2} + 2A x e^{2}$$

$$y_{p}'' = A x^{2} e^{2} + 2A x e^{2} + 2A x e^{2}$$
September 22, 2021 15/26

 $A_{x^2}e^{x} + 4A_{x}e^{x} + 2Ae^{x} - 2(A_{x^2}e^{x} + 2A_{x}e^{x}) + A_{x^2}e^{x} = -4e^{x}$ Collect Ille terms X'é, Xé, é $\chi^{2} \stackrel{\times}{e} \left(\underbrace{A - 2A + A}_{0} \right) + \chi^{2} \stackrel{\times}{e} \left(\underbrace{YA - YA}_{0} \right) + \stackrel{\times}{e} \left(\underbrace{ZA}_{0} \right) = -Y \stackrel{\times}{e}$ A - - 2 Hence yp=-2x2ex The general solution y= C, e+ C2xe - 2xe. イロト イ団ト イヨト イヨト 二日

September 22, 2021 16/26